Recap: Search

- **Search problem:**
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test

- **Search tree:**
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- **Search Algorithm:**
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Action: Flip over the top \(n \) pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

Example: Pancake Problem

State space graph with costs as weights

Example: Pancake Problem

State space graph with costs as weights
General Tree Search

- Action: flip top two
 Cost: 2
- Action: flip all four
 Cost: 4
- Path to reach goal: Flip four, flip three
 Total cost: 7

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

What is a Heuristic?

- An estimate of how close a state is to a goal
- Designed for a particular search problem

- Examples: Manhattan distance: 10+5 = 15
 Euclidean distance: 11.2

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS
Greedy Search

- Expand the node that seems closest...
- What can go wrong?

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost, \(g(n) \)
- Greedy orders by goal proximity, or forward cost, \(h(n) \)
- A* Search orders by the sum: \(f(n) = g(n) + h(n) \)

When should A* terminate?

- Should we stop when we enqueue a goal?
- No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good path cost
- We need estimates to be less than or equal to actual costs!

Admissible Heuristics

- A heuristic \(h \) is admissible (optimistic) if:
 \[
 0 \leq h(n) \leq h^*(n)
 \]
 where \(h^*(n) \) is the true cost to a nearest goal
- Examples:
 - Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)

UCS vs A* Contours

- Uniform-cost expanded in all directions
- A* expands mainly toward the goal, but hedges its bets to ensure optimality

Which Algorithm?

- Uniform cost search (UCS):
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.
- Inadmissible heuristics are often useful too.

Creating Heuristics

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- \(h(\text{start}) = 8 \)
- Is it admissible?

| | Average nodes expanded when optimal path has length...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.4 steps</td>
</tr>
<tr>
<td>UCS</td>
<td>112</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
</tr>
</tbody>
</table>

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance:
- \(h(\text{start}) = 3 + 1 + 2 + \ldots \)
- \(= 18 \)
- Admissible?

Average nodes expanded when optimal path has length...

| | Average nodes expanded when optimal path has length...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.4 steps</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
</tr>
</tbody>
</table>
8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?

 What’s wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_b \) if
 \[\forall n : h_a(n) \geq h_c(n) \]
 \[h(n) = \max(h_a(n), h_b(n)) \]

 Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- …

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

 Tree search + set of expanded states (“closed set”)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

 Hint: in python, store the closed set as a set, not a list

 Can graph search wreck completeness? Why/why not?

 How about optimality?

Graph Search

- In BFS, for example, we shouldn’t bother expanding some nodes (which, and why?)

 Idea: never expand a state twice

 How to implement:
 - Tree search + set of expanded states (“closed set”)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

 Hint: in python, store the closed set as a set, not a list

 Can graph search wreck completeness? Why/why not?

 How about optimality?
A* Graph Search Gone Wrong

State space graph

Search tree

Consistency of Heuristics

Main idea: estimated heuristic costs ≤ actual costs
- Admissibility: heuristic cost ≤ actual cost to goal
 \[h(n) \leq g(n) \]
- Consistency: heuristic “arc” cost ≤ actual cost for each arc
 \[h(n) - h(n') \leq c(n, n') \]

Consequences of consistency:
- The f value along a path never decreases
 \[f(n) \leq g(n) + h(n) \]
- A* graph search is optimal

Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:
- Nodes are popped with non-decreasing f-scores: for all \(n, n' \) with \(n' \) popped after \(n \):
 \[f(n') \geq f(n) \]
 - Proof by induction: (1) always pop the lowest f-score from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!
- For every state \(s \), nodes that reach \(s \) optimally are expanded before nodes that reach \(s \) sub-optimally
- Result: A* graph search is optimal

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (\(h = 0 \))

- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (\(h = 0 \) is consistent)

- Consistency implies admissibility
- In general, natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems