
CSE 473: Artificial Intelligence 

Markov Decision Processes (MDPs) 
!

Hanna Hajishirzi

Many slides over the course adapted from Luke Zettlemoyer, 
Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore

1



Recap: Defining MDPs

§ Markov decision processes: 
§ States S 
§ Start state s0 
§ Actions A 
§ Transitions P(s’|s,a) (or T(s,a,s’)) 
§ Rewards R(s,a,s’) (and discount γ) 
!
!

§ MDP quantities so far: 
§ Policy = Choice of action for each state 
§ Utility (or return) = sum of discounted rewards
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Optimal Utilities

§ Define the value of a state s: 
V*(s) = expected utility starting in s 

and acting optimally 
!

§ Define the value of a q-state 
(s,a): 
Q*(s,a) = expected utility starting in 

s, taking action a and thereafter 
acting optimally 

!
§ Define the optimal policy: 

π*(s) = optimal action from state s
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The Bellman Equations
§ Definition of “optimal utility” leads to a 

simple one-step lookahead relationship 
amongst optimal utility values: 
§ Expected utility under optimal action 
§ Average sum of (discounted) rewards 
§ This is just what expectimax does 
!

§ Formally:
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Solving MDPs

§ Find V*(s) for all the states in S 
§ |S| non-linear equations with |S| unknown

§ Our proposal: 
§ Dynamic programming 
§ Define V*i(s) as the optimal value of s if game 

ends in i steps   
§ V*0(s)=0 for all the states
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Example: γ=0.9, living 
reward=0, noise=0.2







Example: Bellman Updates
Example: γ=0.9, living 
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Example: Value Iteration

§ Information propagates outward from terminal 
states and eventually all states have correct 
value estimates

V1 V2













Value Estimates

§ Calculate estimates Vk
*(s) 

§ The optimal value considering 
only next k time steps (k rewards) 

§ As k → ∞, it approaches the 
optimal value

§ Why: 
§ If discounting, distant rewards 

become negligible 
§ If terminal states reachable from 

everywhere, fraction of episodes 
not ending becomes negligible 

§ Otherwise, can get infinite expected 
utility and then this approach 
actually won’t work



Why Not Search Trees?

§ Why not solve with expectimax? 

§ Problems: 
§ This tree is usually infinite (why?) 
§ Same states appear over and over (why?) 
§ We would search once per state (why?) 

§ Idea: Value iteration 
§ Compute optimal values for all states all at 

once using successive approximations 
§ Will be a bottom-up dynamic program 

similar in cost to memoization 
§ Do all planning offline, no replanning 

needed!



Computing time limited values
Compu)ng#Time<Limited#Values#



Example of Value iteration
Example:#Value#Itera)on#

##0#############0#############0#

##2#############1#############0#

##3.5##########2.5##########0#

Assume no discount! 



Value Iteration

§ Idea: 
§ Start with V0

*(s) = 0, which we know is right (why?) 
§ Given Vi

*, calculate the values for all states for depth i+1: 

§ This is called a value update or Bellman update 
§ Repeat until convergence

§ Theorem: will converge to unique optimal values 
§ Basic idea: approximations get refined towards optimal values 
§ Policy may converge long before values do



Convergence
Convergence*#

!  How#do#we#know#the#Vk#vectors#are#going#to#converge?#

!  Case#1:#If#the#tree#has#maximum#depth#M,#then#VM#holds#
the#actual#untruncated#values#

!  Case#2:#If#the#discount#is#less#than#1#
!  Sketch:#For#any#state#Vk#and#Vk+1#can#be#viewed#as#depth#k

+1#expec)max#results#in#nearly#iden)cal#search#trees#
!  The#difference#is#that#on#the#bosom#layer,#Vk+1#has#actual#

rewards#while#Vk#has#zeros#
!  That#last#layer#is#at#best#all#RMAX##
!  It#is#at#worst#RMIN##
!  But#everything#is#discounted#by#γk#that#far#out#
!  So#Vk#and#Vk+1#are#at#most#γk#max|R|#different#
!  So#as#k#increases,#the#values#converge#



Value Iteration Complexity

§ Problem size:  
§ |A| actions and |S| states 

§ Each Iteration 
§ Computation: O(|A|⋅|S|2) 
§ Space: O(|S|) 

§ Num of iterations 
§ Can be exponential in the discount factor γ



Computing Actions from Values



Computing Actions from Values



Computing Actions from Values

§ Which action should we chose from state s: 

§ Given optimal values Q? 

§ Given optimal values V? 

§ Lesson: actions are easier to select from Q’s!



Aside: Q-Value Iteration

§ Value iteration: find successive approx optimal values 
§ Start with V0

*(s) = 0 
§ Given Vi

*, calculate the values for all states for depth i+1:

§ But Q-values are more useful! 
§ Start with Q0

*(s,a) = 0 
§ Given Qi

*, calculate the q-values for all q-states for depth i+1:



Example: Value Iteration
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Outline

§ Markov Decision Processes (MDPs) 
§MDP formalism 
§Value Iteration 
§Policy Iteration 
!

§ Reinforcement Learning (RL) 
§Relationship to MDPs 
§Several learning algorithms



Utilities for Fixed Policies
§ Another basic operation: 

compute the utility of a state s 
under a fix (general non-optimal) 
policy 

§ Define the utility of a state s, 
under a fixed policy π: 
Vπ(s) = expected total discounted 

rewards (return) starting in s and 
following π 

§ Recursive relation (one-step 
look-ahead / Bellman equation):

π(s)
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Policy EvaluationExample:#Policy#Evalua)on#
Always#Go#Right# Always#Go#Forward#



Policy Evaluation

§ How do we calculate the V’s for a fixed policy? 

§ Idea one: modify Bellman updates 

§ Idea two: it’s just a linear system, solve with 
Matlab (or whatever)



Policy Iteration

§ Problem with value iteration: 
§ Considering all actions each iteration is slow: takes |A| 

times longer than policy evaluation 
§ But policy doesn’t change each iteration, time wasted 

§ Alternative to value iteration: 
§ Step 1: Policy evaluation: calculate utilities for a fixed 

policy (not optimal utilities!) until convergence (fast) 
§ Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not 
optimal!) utilities (slow but infrequent) 

§ Repeat steps until policy converges



Policy Iteration

§ Policy evaluation: with fixed current policy π, find values 
with simplified Bellman updates 
§ Iterate until values converge 
!
!
!

§ Note: could also solve value equations with other techniques 

§ Policy improvement: with fixed utilities, get a better policy 

§ find the best action according to one-step look-ahead



Policy Iteration Complexity

§ Problem size:  
§ |A| actions and |S| states 

§ Each Iteration 
§ Computation: O(|S|3 + |A|⋅|S|2) 
§ Space: O(|S|) 

§ Num of iterations 
§ Unknown, but can be faster in practice 
§ Convergence is guaranteed 



Comparison

§ In value iteration: 
§ Every pass (or “backup”) updates both utilities (explicitly, based 

on current utilities) and policy (possibly implicitly, based on 
current policy) 

!
§ In policy iteration: 

§ Several passes to update utilities with frozen policy 
§ After a policy is evaluated, a new policy is chosen 
§ The new policy is better (or we are done) 
!

§ Hybrid approaches (asynchronous policy iteration): 
§ Any sequences of partial updates to either policy entries or 

utilities will converge if every state is visited infinitely often



Summary: MDP Algorithms

So	  you	  want	  to ….!
§ ! Compute	  opimal	  values:	  use	  value	  itera4on	  or	  policy	  itera4on	  

§ 	   Compute	  values	  for	  a	  par4cular	  policy:	  use	  policy	  evalua4on	  

§ 	   Turn	  your	  values	  into	  a	  policy:	  use	  policy	  extrac4on	  (one-‐step	  
lookahead)	  

§ These	  all	  look	  the	  same! 
They	  basically	  are	  –	  they	  are	  all	  varia4ons	  of	  Bellman	  updates  
They	  all	  use	  one-‐step	  lookahead	  expec4max	  fragments 
They	  differ	  only	  in	  whether	  we	  plug	  in	  a	  fixed	  policy	  or	  max	  
over	  ac4ons	

!


