
CSE 473: Artificial Intelligence 

Markov Decision Processes (MDPs)
!

Hanna Hajishirzi

Many slides over the course adapted from Luke Zettlemoyer,
Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore

1

Recap: Defining MDPs

§ Markov decision processes:
§ States S
§ Start state s0
§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount γ)
!
!

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

Optimal Utilities

§ Define the value of a state s:
V*(s) = expected utility starting in s

and acting optimally
!

§ Define the value of a q-state
(s,a):
Q*(s,a) = expected utility starting in

s, taking action a and thereafter
acting optimally

!
§ Define the optimal policy:

π*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’

The Bellman Equations
§ Definition of “optimal utility” leads to a

simple one-step lookahead relationship
amongst optimal utility values:
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax does
!

§ Formally:

a

s

s, a

s,a,s’
s’

Solving MDPs

§ Find V*(s) for all the states in S
§ |S| non-linear equations with |S| unknown

§ Our proposal:
§ Dynamic programming
§ Define V*i(s) as the optimal value of s if game

ends in i steps
§ V*0(s)=0 for all the states

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

Example: γ=0.9, living
reward=0, noise=0.2

Example: Bellman Updates
Example: γ=0.9, living
reward=0, noise=0.2BRIEF ARTICLE

THE AUTHOR

V0

V1

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

BRIEF ARTICLE

THE AUTHOR

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

Q1(h3, 3i, right) =

X

s0

T (h3, 3i, right, s0
)

⇥
R(h3, 3i, right, s0

) + �Vi(s
0
)

⇤

1

?

?

? ???

?

? ?

BRIEF ARTICLE

THE AUTHOR

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

Q1(h3, 3i, right) =

X

s0

T (h3, 3i, right, s0
)

⇥
R(h3, 3i, right, s0

) + �Vi(s
0
)

⇤

= 0.8 ⇤ [0.0 + 0.9 ⇤ 1.0] + 0.1 ⇤ [0.0 + 0.9 ⇤ 0.0] + 0.1 ⇤ [0.0 + 0.9 ⇤ 0.0]

1

Example: Value Iteration

§ Information propagates outward from terminal
states and eventually all states have correct
value estimates

V1 V2

Value Estimates

§ Calculate estimates Vk
*(s)

§ The optimal value considering
only next k time steps (k rewards)

§ As k → ∞, it approaches the
optimal value

§ Why:
§ If discounting, distant rewards

become negligible
§ If terminal states reachable from

everywhere, fraction of episodes
not ending becomes negligible

§ Otherwise, can get infinite expected
utility and then this approach
actually won’t work

Why Not Search Trees?

§ Why not solve with expectimax?

§ Problems:
§ This tree is usually infinite (why?)
§ Same states appear over and over (why?)
§ We would search once per state (why?)

§ Idea: Value iteration
§ Compute optimal values for all states all at

once using successive approximations
§ Will be a bottom-up dynamic program

similar in cost to memoization
§ Do all planning offline, no replanning

needed!

Computing time limited values
Compu)ng#Time<Limited#Values#

Example of Value iteration
Example:#Value#Itera)on#

##0#############0#############0#

##2#############1#############0#

##3.5##########2.5##########0#

Assume no discount!

Value Iteration

§ Idea:
§ Start with V0

*(s) = 0, which we know is right (why?)
§ Given Vi

*, calculate the values for all states for depth i+1:

§ This is called a value update or Bellman update
§ Repeat until convergence

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

Convergence
Convergence*#

!  How#do#we#know#the#Vk#vectors#are#going#to#converge?#

!  Case#1:#If#the#tree#has#maximum#depth#M,#then#VM#holds#
the#actual#untruncated#values#

!  Case#2:#If#the#discount#is#less#than#1#
!  Sketch:#For#any#state#Vk#and#Vk+1#can#be#viewed#as#depth#k

+1#expec)max#results#in#nearly#iden)cal#search#trees#
!  The#difference#is#that#on#the#bosom#layer,#Vk+1#has#actual#

rewards#while#Vk#has#zeros#
!  That#last#layer#is#at#best#all#RMAX##
!  It#is#at#worst#RMIN##
!  But#everything#is#discounted#by#γk#that#far#out#
!  So#Vk#and#Vk+1#are#at#most#γk#max|R|#different#
!  So#as#k#increases,#the#values#converge#

Value Iteration Complexity

§ Problem size:
§ |A| actions and |S| states

§ Each Iteration
§ Computation: O(|A|⋅|S|2)
§ Space: O(|S|)

§ Num of iterations
§ Can be exponential in the discount factor γ

Computing Actions from Values

Computing Actions from Values

Computing Actions from Values

§ Which action should we chose from state s:

§ Given optimal values Q?

§ Given optimal values V?

§ Lesson: actions are easier to select from Q’s!

Aside: Q-Value Iteration

§ Value iteration: find successive approx optimal values
§ Start with V0

*(s) = 0
§ Given Vi

*, calculate the values for all states for depth i+1:

§ But Q-values are more useful!
§ Start with Q0

*(s,a) = 0
§ Given Qi

*, calculate the q-values for all q-states for depth i+1:

Example: Value Iteration

27

Outline

§ Markov Decision Processes (MDPs)
§MDP formalism
§Value Iteration
§Policy Iteration
!

§ Reinforcement Learning (RL)
§Relationship to MDPs
§Several learning algorithms

Utilities for Fixed Policies
§ Another basic operation:

compute the utility of a state s
under a fix (general non-optimal)
policy

§ Define the utility of a state s,
under a fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

§ Recursive relation (one-step
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

Policy EvaluationExample:#Policy#Evalua)on#
Always#Go#Right# Always#Go#Forward#

Policy Evaluation

§ How do we calculate the V’s for a fixed policy?

§ Idea one: modify Bellman updates

§ Idea two: it’s just a linear system, solve with
Matlab (or whatever)

Policy Iteration

§ Problem with value iteration:
§ Considering all actions each iteration is slow: takes |A|

times longer than policy evaluation
§ But policy doesn’t change each iteration, time wasted

§ Alternative to value iteration:
§ Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence (fast)
§ Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

§ Repeat steps until policy converges

Policy Iteration

§ Policy evaluation: with fixed current policy π, find values
with simplified Bellman updates
§ Iterate until values converge
!
!
!

§ Note: could also solve value equations with other techniques

§ Policy improvement: with fixed utilities, get a better policy

§ find the best action according to one-step look-ahead

Policy Iteration Complexity

§ Problem size:
§ |A| actions and |S| states

§ Each Iteration
§ Computation: O(|S|3 + |A|⋅|S|2)
§ Space: O(|S|)

§ Num of iterations
§ Unknown, but can be faster in practice
§ Convergence is guaranteed

Comparison

§ In value iteration:
§ Every pass (or “backup”) updates both utilities (explicitly, based

on current utilities) and policy (possibly implicitly, based on
current policy)

!
§ In policy iteration:

§ Several passes to update utilities with frozen policy
§ After a policy is evaluated, a new policy is chosen
§ The new policy is better (or we are done)
!

§ Hybrid approaches (asynchronous policy iteration):
§ Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

Summary: MDP Algorithms

So	 you	 want	 to ….!
§ ! Compute	 opimal	 values:	 use	 value	 itera4on	 or	 policy	 itera4on	

§ 	 Compute	 values	 for	 a	 par4cular	 policy:	 use	 policy	 evalua4on	

§ 	 Turn	 your	 values	 into	 a	 policy:	 use	 policy	 extrac4on	 (one-‐step	
lookahead)	

§ These	 all	 look	 the	 same! 
They	 basically	 are	 –	 they	 are	 all	 varia4ons	 of	 Bellman	 updates  
They	 all	 use	 one-‐step	 lookahead	 expec4max	 fragments 
They	 differ	 only	 in	 whether	 we	 plug	 in	 a	 fixed	 policy	 or	 max	
over	 ac4ons	

!

