CSE 473: Artificial Intelligence
Spring 2014

Expectimax Search

Hanna Hajishirzi

Based on slides from Dan Klein, Luke Zettlemoyer

Many slides over the course adapted from either Stuart Russell
or Andrew Moore

Overview:
Search

Search Problems

Pancake Example:
State space graph with costs as weights

General Tree Search

function I'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Path to reach goal:
Flip four, flip three

/ Total cost: 7
l >

Search Strategies

= Uninformed Search algorithms:

= Depth First Search

= Breath First Search

» Uniform Cost Search: select smallest g(n)
= Heuristic Search:

» Best First Search : select smallest h(n)

= A* Search: select smallest f(n)=g(n)+h(n)

= Graph Search

Which Algorithm?

Which Algorithm?

Optimal A* Tree Search

= A* tree search is optimal if h is admissible

= A heuristic 4 is admissible (optimistic) if:

h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

Optimal A* Graph Search

= A* graph search is optimal if h is
consistent

g=10 "

-~ \.)l
h=10

= Consistency for all edges (A,a,B):
= h(A)=<c(A,a,B) + h(B)
Triangular inequality

Which Algorithm?

Overview:
Adversarial Search

11

Single Agent Game Tree

Value of a state: Non Terminal States:
The best ac(hle;/ab)le ma .)V(s’)
outcome (utility n s’ €children
from that state —
_ J

E- € - n
Terminal States:
V(s) = known

Adversarial Game Tree

States Under Agent’s Control: States Under Opponent’s Control:

V(s) = max V(s V(s') = min V(s)
s’ €successors(s) \ sesuccessors(s’)

Terminal States:
V(s) = known

Minimax Example

Minimax Properties

= Optimal?
» Yes, against perfect player. Otherwise?

= Time complexity?
= O(b™m)

= Space complexity?
= O(bm)

10

10

max

= Forchess,b=35 m=100
= Exact solution is completely infeasible
= But, do we need to explore the whole tree?

min

100

Today

= Adversarial Search
» Alpha-beta pruning
= Evaluation functions
» Expectimax

= Reminder:
* Programming 1 due in one week!
* Programming 2 will be on adversarial search

Alpha-Beta Pruning Example
A

{3 Z\f\

a is MAX'’s best alternative here or above
B is MIN'’s best alternative here or above

Alpha-Beta Pruning Example
A

4 /Bi %\j\%\

a is MAX'’s best alternative here or above
B is MIN'’s best alternative here or above

Alpha-Beta Pruning Example
A

4 jBi %\j\%\

a is MAX'’s best alternative here or above
B is MIN'’s best alternative here or above

Alpha-Beta Pruning Example

AN

4 # 7 A A

a is MAX'’s best alternative here or above
B is MIN'’s best alternative here or above

Alpha-Beta Pruning Example

i

2 1

a is MAX'’s best alternative here or above
B is MIN'’s best alternative here or above

Alpha-Beta Pruning Properties

= This pruning has no effect on final result at the root

= Values of intermediate nodes might be wrong!
= but, they are bounds

= Good child ordering improves effectiveness of pruning

= With “perfect ordering™
= Time complexity drops to O(b™?2)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

Resource Limits

Cannot search to leaves

Depth-limited search
» |nstead, search a limited depth of tree

min
» Replace terminal utilities with an eval -
function for non-terminal positions A A
LN

max

min

= e.g., a-p reaches about depth 8 —
decent chess program

Guarantee of optimal play is gone /< A
Evaluation function matters

= |t works better when we have a
greater depth look ahead

Depth Matters

depth 2

Depth Matters

depth 10

Evaluation Functions

= Function which scores non-terminals

s @ W @z

2 2wz
Black to move _,_’_'/____\:3_ _,_’_'/____\:3_ White to move
White slightly better Black winning

Eval(s) = w1 f1(s) +waf2a(s) + ...+ wnfn(s)

= [deal function: returns the utility of the position
» |n practice: typically weighted linear sum of features:
= e.g. f1(s) = (hum white queens — num black queens), etc.

Bad Evaluation Function

Why Pacman Starves

He knows his score will go up by eating the dot now

He knows his score will go up just as much by eating the
dot later on

There are no point-scoring opportunities after eating the
dot

Therefore, waiting seems just as good as eating

Evaluation for Pacman

What features would be good for Pacman?

Eval(s) = w1 f1(s) +wafo(s) + ...+ wnfn(s)

Evaluation Function

Evaluation Function

Minimax Example

No point in trying

Expectimax

3 ply look ahead, ghosts
move randomly

Wins some of the
games

Worst-case vs. Average

max

min

10| |10 9 100
= Uncertain outcomes are controlled by chance not an
adversary

= Chance nodes are new types of nodes (instead of Min
nodes)

Stochastic Single-Player

= \What if we don’t know what the

result of an action will be? E.g.,
» |n solitaire, shuffle is unknown max
* |In minesweeper, mine locations

_ average
= Can do expectimax search

» Chance nodes, like actions

except the environment controls

the action chosen 10| | 4 5 7
= Max nodes as before
» Chance nodes take average

(expectation) of value of children

Expectimax Pseudocode

1/2 1/6
1/3

v =(1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Maximum Expected Utility

Why should we average utilities? Why not minimax?

Principle of maximum expected utility: an agent should
choose the action which maximizes its expected utility,
given its knowledge

» General principle for decision making
= Often taken as the definition of rationality
= We’'ll see this idea over and over in this course!

Let’'s decompress this definition...

Reminder: Probabilities

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: traffic on freeway?
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

Some laws of probability (more later):
= Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
= P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
= We'll talk about methods for reasoning and updating probabilities later

What are Probabilities?

= QObijectivist / frequentist answer:
= Averages over repeated experiments
= E.g. empirically estimating P(rain) from historical observation

= E.g. pacman’s estimate of what the ghost will do, given what it
has done in the past

Assertion about how future experiments will go (in the limit)
Makes one think of inherently random events, like rolling dice

» Subijectivist / Bayesian answer:

= Degrees of belief about unobserved variables

= E.g. an agent’s belief that it'’s raining, given the temperature

= E.g. pacman’s belief that the ghost will turn left, given the state
= Often learn probabilities from past experiences (more later)

= New evidence updates beliefs (more later)

Uncertainty Everywhere

= Not just for games of chance!
* |I'm sick: will | sneeze this minute?
= Email contains “FREE!": is it spam?
= Tooth hurts: have cavity?
= 60 min enough to get to the airport?
= Robot rotated wheel three times, how far did it advance?
= Safe to cross street? (Look both ways!)

= Sources of uncertainty in random variables:
* |nherently random process (dice, etc)
= |nsufficient or weak evidence
» [gnorance of underlying processes
= Unmodeled variables
= The world’s just noisy — it doesn’t behave according to plan!

Reminder: Expectations

= We can define function f(X) of a random variable X

= The expected value of a function is its average value,
weighted by the probability distribution over inputs

= Example: How long to get to the airport?
= |Length of driving time as a function of traffic:
L(none) = 20, L(light) = 30, L(heavy) = 60
= What is my expected driving time?
= Notation: Epm)[L(T)]
= Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

= E[L(T)]=L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
= E[L(T)]=(20 *0.25) + (30 * 0.5) + (60 * 0.25) = 35

Review: Expectations

= Real valued functions of random variables:
f: X —>R

= Expectation of a function of a random variable
Epoolf(X)] =3 f(@)P(x)
xZr

= Example: Expected value of a fair die roll

X P

/

1/6

1/6

1/6

1/6

1/6

Dl |WIN]| -~

1/6

Dl |WIN]|—~

1 1 1 1 1
1 X — 2 X — 3IX —4+4 x — 5 X — 6 X
XcF+2x o +3xo+ax+5x -+

= 3.5

1

6

Utilities

= Utilities are functions from outcomes (states of the world)
to real numbers that describe an agent’s preferences

= Where do utilities come from?
* |n a game, may be simple (+1/-1)
= Utilities summarize the agent’s goals

= Theorem: any set of preferences between outcomes can be
summarized as a utility function (provided the preferences meet

certain conditions)

= |n general, we hard-wire utilities and let actions emerge
(why don’t we let agents decide their own utilities?)

= More on utilities soon...

Expectimax Search Trees

= \What if we don’t know what the

result of an action will be? E.g.,
= |n solitaire, next card is unknown
* |n minesweeper, mine locations max
*= |n pacman, the ghosts act randomly

= (Can do expectimax search

= Chance nodes, like min nodes, chance
except the outcome is uncertain

= Calculate expected utilities

= Max nodes as in minimax
search

= Chance nodes take average 10 4 5 7
(expectation) of value of children

= [ater, we'll learn how to formalize
the underlying problem as a
Markov Decision Process

Expectimax Search

= |n expectimax search, we have a
probabilistic model of how the
opponent (or environment) will
behave in any state

= Model could be a simple uniform
distribution (roll a die)

= Model could be sophisticated and
require a great deal of computation

= \We have a node for every outcome
out of our control: opponent or
environment

= The model might say that adversarial
actions are likely!

= For now, assume for any state we
magically have a distribution to
assign probabilities to opponent
actions / environment outcomes

Expectimax Pruning

12

15

46

Expectimax Pruning

3 12 9 2

= Not easy
= exact: need bounds on possible values

= approximate: sample high-probability branches
47

Depth-limited Expectimax

O

400

300

:

v X

E]

]

\

Estimate of true
expectimax value
(which would
require a lot of

work to compute)/

492

362

48

Expectimax Evaluation

= Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

= For minimax, evaluation function scale doesn’t matter

= We just want better states to have higher evaluations
(get the ordering right)

» We call this insensitivity to monotonic transformations
= For expectimax, we need magnitudes to be meaningful

.

0 || 40 20130 ix2: |ol[1600 |400| 900

Expectimax Pseudocode

def value(s)
if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)

def maxValue(s)
values = [value(s’) for s’ in successors(s)]

return max(values) 8 4 S

def expValue(s)
values = [value(s’) for s’ in successors(s)]
weights = [probability(s, s’) for s’ in successors(s)]
return expectation(values, weights)

Expectimax for Pacman

Notice that we've gotten away from thinking that the
ghosts are trying to minimize pacman’s score

Instead, they are now a part of the environment

Pacman has a belief (distribution) over how they will
act

Quiz: Can we see minimax as a special case of
expectimax?

Quiz

= Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

= Question: What tree search should you use?

0.9

= Answer: Expectimax!

To figure out EACH chance node’s probabilities,
you have to run a simulation of your opponent

This kind of thing gets very slow very quickly

Even worse if you have to simulate your
opponent simulating you...

... except for minimax, which has the nice
property that it all collapses into one game tree

52

Expectimax for Pacman

Results from playing 5 games

Random
Ghost

Won 5/5 Won 5/5

Minimax PR -
Sl vg. Score: vg. Score:
493 483
_ Won 1/5 Won 5/5
2peeElme Avg. Score: Avg. Score:
Pacman

-303 503 SCORE: 0

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Mixed Layer Types

= E.g. Backgammon
= Expectiminimax

= Environment is an
extra player that moves
after each agent

= Chance nodes take MIN
expectations, otherwise
like minimax

MAX

CHANCE

if state is a MAX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Stochastic Two-Player

* Dice rolls increase b: 21 possible rolls
with 2 dice

= Backgammon = 20 legal moves
= Depth4=20x (21 x20)% 1.2x 10°

» As depth increases, probability of
reaching a given node shrinks

0 123 45 6 789101112|
= So value of lookahead is diminished
= So limiting depth is less damaging

= But pruning is less possible...

= TDGammon uses depth-2 search + 25 242322212019 18 17 16 15 14 13
very good eval function +
reinforcement learning: world-
champion level play

Multi-player Non-Zero-Sum Games

= Similar to
minimax:

= Utilities are now
tuples

= Each player
maximizes their
own entry at
each node

= Propagate (or
back up) nodes
from children

= Can giverise to
cooperation and
competition
dynamically...

-\

A\

1,2,6

4,3,2

6,1,2

7,41

5,1,1 1,5,2 7

)

5,4,5

