A* Search

Hanna Hajishirzi

Based on slides from Luke Zettelemoyer, Dan Klein
Multiple slides from Stuart Russell or Andrew Moore
Announcements

- Programming assignment 1 is on the webpage
 - Start early
 - Due a week from Friday
 - Go to office hours and ask questions
Recap

- Rational Agents
- Problem state spaces and search problems
- Uninformed search algorithms
 - DFS
 - BFS
 - UCS
- Heuristics
 - Best First Greedy
Example: Pancake Problem

Action: Flip over the top n pancakes

Cost: Number of pancakes flipped
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n. We show that $f(n) \leq (5n + 5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.
Example: Pancake Problem

State space graph with costs as weights
function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Action: flip top two
Cost: 2

Path to reach goal:
Flip four, flip three
Total cost: 7
Uniform Cost Search

- Strategy: expand lowest path cost

- The good: UCS is complete and optimal!

- The bad:
 - Explores options in every “direction”
 - No information about goal location
Example: Heuristic Function

$h(x)$ assigns a value to a state
Example: Heuristic Function

Heuristic: the largest pancake that is still out of place
Best First (Greedy)

- **Strategy**: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- **A common case**:
 - Best-first takes you straight to the (wrong) goal

- **Worst-case**: like a wrongly-guided DFS
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* \(f(n) = g(n) \)
- **Best-first** orders by goal proximity, or *forward cost* \(f(n) = h(n) \)
- **A* Search** orders by the sum: \(f(n) = g(n) + h(n) \)
When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!
Admissible Heuristics

- A heuristic h is \textit{admissible} (optimistic) if:

\[h(n) \leq h^*(n) \]

where $h^*(n)$ is the true cost to a nearest goal.

- Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Assume:
- G^* is an optimal goal
- G is a sub-optimal goal
- h is admissible

Claim:
- G^* will exit fringe before G
Optimality of A*: Blocking

Notation:
- $g(n) = \text{cost to node } n$
- $h(n) = \text{estimated cost from } n \text{ to the nearest goal (heuristic)}$
- $f(n) = g(n) + h(n) = \text{estimated total cost via } n$
- $G^*: \text{a lowest cost goal node}$
- $G: \text{another goal node}$
Optimality of A*: Blocking

Proof:

- What could go wrong?
- We’d have to pop a suboptimal goal G off the fringe before G*

- This can’t happen:
 - For all nodes n on the best path to G*
 - \(f(n) < f(G) \)
 - So, G* will be popped before G
Properties of A*

Uniform-Cost

A*
UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
UCS

- 900 States
Astar

- 180 States
Creating Heuristics

8-puzzle:

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- $h(\text{start}) = 8$
- Is it admissible?

<table>
<thead>
<tr>
<th>Steps</th>
<th>UCS</th>
<th>Tiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>6,300</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>3.6 x 10</td>
<td>227</td>
</tr>
</tbody>
</table>
What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

Total *Manhattan* distance

\[h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \]

Admissible?

<table>
<thead>
<tr>
<th>TILES</th>
<th>…4 steps</th>
<th>…8 steps</th>
<th>…12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>39</td>
<td>227</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANHATTAN</th>
<th>…4 steps</th>
<th>…8 steps</th>
<th>…12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>25</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>
8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- **With A*: a trade-off between quality of estimate and work per node!
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.

- Inadmissible heuristics are often useful too (why?)
Trivial Heuristics, Dominance

- Dominance: $h_a \geq h_c$ if
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Today

- Graph Search
 - Optimality of A* graph search
- Adversarial Search
Which Search Strategy?
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?
Graph Search

- In BFS, for example, we shouldn’t bother expanding some nodes (which, and why?)
Graph Search

- **Idea:** never expand a state twice

- **How to implement:**
 - Tree search + list of expanded states (closed list)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new

- **Python trick:** store the closed list as a set, not a list

- Can graph search wreck completeness? Why/why not?

- How about optimality?
A* Graph Search Gone Wrong

State space graph

Search tree

S (0+2)

A (1+4) B (1+1)

C (2+1) C (3+1)

G (5+0) G (6+0)
Consider what A* does:
- Expands nodes in increasing total f value (f-contours)
- Proof idea: optimal goals have lower f value, so get expanded first
Optimality of A* Graph Search

Proof:

- Main idea: Show nodes are popped with non-decreasing f-scores
 - for n’ popped after n:
 - $f(n') \geq f(n)$
 - is this enough for optimality?

- Sketch:
 - assume: $f(n') \geq f(n)$, for all edges (n,a,n’) and all actions a
 - is this true?
 - proof: A* never expands nodes with the cost $f(n) > C^*$
 - proof by induction (1) always pop the lowest f-score from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!
Consistency

- Wait, how do we know parents have better f-values than their successors?

- **Consistency** for all edges (A,a,B):
 - \(h(A) \leq c(A,a,B) + h(B) \)

- **Proof that** \(f(B) \geq f(A) \),
 - \(f(B) = g(B) + h(B) = g(A) + c(A,a,B) + h(B) \geq g(A) + h(A) = f(A) \)
Optimality

- **Tree search:**
 - A^* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case ($h = 0$)

- **Graph search:**
 - A^* optimal if heuristic is consistent
 - UCS optimal ($h = 0$ is consistent)

- Consistency implies admissibility

- In general, natural admissible heuristics tend to be consistent
A* uses both backward costs and (estimates of) forward costs.

A* is optimal with admissible (and/or consistent) heuristics.

Heuristic design is key: often use relaxed problems.
A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- …
Which Algorithm?
Which Algorithm?
Which Algorithm?
Which Algorithm?

- Uniform cost search (UCS):
Which Algorithm?

- A*, Manhattan Heuristic:
Which Algorithm?

- Best First / Greedy, Manhattan Heuristic:
To Do:

- Keep up with the readings
- Get started on PS1
 - it is long; start soon
 - due a week from Friday
Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)
 - Proof idea: optimal goals have lower f value, so get expanded first

We’re making a stronger assumption than in the last proof… What?
Consider what A* does:

- Expands nodes in increasing total f value (f-contours)

 Reminder: \(f(n) = g(n) + h(n) = \text{cost to } n + \text{heuristic} \)

- Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There’s a problem with this argument. What are we assuming is true?