
CSE 473: Artificial Intelligence 

Spring 2014

A* Search

Hanna Hajishirzi
Based on slides from Luke Zettelemoyer, Dan Klein

Multiple slides from Stuart Russell or Andrew Moore

Announcements

§ Programming assignment 1 is on the
webpage
§ Start early
§ Due a week from Friday
§ Go to office hours and ask questions

2

Recap

§ Rational Agents
§ Problem state spaces and search

problems
§ Uninformed search algorithms

§ DFS
§ BFS
§ UCS

§ Heuristics
§ Best First Greedy

3

Example: Pancake Problem

Cost: Number of pancakes flipped

Action: Flip over the
top n pancakes

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2

3

General Tree Search

Action: flip top
two  

Cost: 2

Action: flip all four 
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

Uniform Cost Search

§ Strategy: expand lowest
path cost
!

§ The good: UCS is
complete and optimal!
!

§ The bad:
§ Explores options in every

“direction”
§ No information about goal

location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

Example: Heuristic Function

h(x): assigns a
value to a state

Example: Heuristic Function
Heuristic: the largest pancake that is still out of place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Best First (Greedy)

§ Strategy: expand a node
that you think is closest
to a goal state
§ Heuristic: estimate of

distance to nearest goal
for each state !

§ A common case:
§ Best-first takes you

straight to the (wrong) goal
!

§ Worst-case: like a
wrongly-guided DFS

…
b

…
b

Combining UCS and Greedy

§ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

h=5

h=6

h=2

1

5

1
1

2

h=6

h=0

c
h=7

3

e h=1
1

Example: Teg Grenager

§ Uniform-cost orders by path cost, or backward cost f(n)=g(n)
§ Best-first orders by goal proximity, or forward cost f(n)=h(n)

1

Combining#UCS#and#Greedy#

!  UniformKcost#orders#by#path#cost,#or#backward-cost--g(n)#
!  Greedy#orders#by#goal#proximity,#or#forward-cost--h(n)-

!  A*#Search#orders#by#the#sum:#f(n)#=#g(n)#+#h(n)-

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example:#Teg#Grenager#

S

a

b

c

e d

d G

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

G

§ Should we stop when we enqueue a goal?

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

§ No: only stop when we dequeue a goal

Is A* Optimal?

A

GS

1
3

h = 6

h = 0

5

h = 7

§ What went wrong?
§ Actual bad goal cost < estimated good goal cost
§ We need estimates to be less than actual costs!

Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:
!
!

 where is the true cost to a nearest goal

4 15

§ Examples:
!
!

§ Coming up with admissible heuristics is most
of what’s involved in using A* in practice.

Optimality of A*

…Assume:
§ G* is an optimal goal

§ G is a sub-optimal goal

§ h is admissible

Claim:
§ G* will exit fringe before G

Optimality of A*: Blocking

…Notation:
§ g(n) = cost to node n

§ h(n) = estimated cost from n

to the nearest goal (heuristic)

§ f(n) = g(n) + h(n) = 
estimated total cost via n

§ G*: a lowest cost goal node

§ G: another goal node

Optimality of A*: Blocking

Proof:
§ What could go wrong?
§ We’d have to have to pop a

suboptimal goal G off the
fringe before G*

…

§ This can’t happen:
§ For all nodes n on the

best path to G*
§ f(n) < f(G)

§ So, G* will be popped
before G

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

§ Uniform-cost
expanded in all
directions
!
!

§ A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Start Goal

Start Goal

UCS
§ 900 States

21

Astar
§ 180 States

22

Creating Heuristics

§ What are the states?
§ How many states?
§ What are the actions?
§ What states can I reach from the start state?
§ What should the costs be?

8-puzzle:

8 Puzzle I

§ Heuristic: Number of
tiles misplaced
!

§ h(start) = 8

Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 10
TILES 13 39 227

§ Is it admissible?

8 Puzzle II

§ What if we had an
easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

§ Total Manhattan
distance

§ h(start) =
3 + 1 + 2 + …

 = 18

Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227!
MANHATTAN 12 25 73§ Admissible?

8 Puzzle III

§ How about using the actual cost as a
heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§ With A*: a trade-off between quality of
estimate and work per node!

Creating Admissible Heuristics
§ Most of the work in solving hard search problems

optimally is in coming up with admissible heuristics
!

§ Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

15
366

§ Inadmissible heuristics are often useful too (why?)

Trivial Heuristics, Dominance

§ Dominance: ha ≥ hc if

!
!

§ Heuristics form a semi-lattice:
§ Max of admissible heuristics is admissible
!
!
!

§ Trivial heuristics
§ Bottom of lattice is the zero heuristic (what

does this give us?)
§ Top of lattice is the exact heuristic

Today

§ Graph Search
§ Optimality of A* graph search

§ Adversarial Search

29

Which Search Strategy?

30

Which Search Strategy?

31

Which Search Strategy?

32

Which Search Strategy?

33

Which Search Strategy?

34

Tree Search: Extra Work!

§ Failure to detect repeated states can cause
exponentially more work. Why?

Graph Search

§ In BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search
§ Idea: never expand a state twice

§ How to implement:

§ Tree search + list of expanded states (closed list)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state is new

§ Python trick: store the closed list as a set, not a list

§ Can graph search wreck completeness? Why/why not?

§ How about optimality?

A* Graph Search Gone Wrong

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

S

A

B

C

G

State space graph Search tree

Optimality of A* Graph Search

§ Consider what A* does:
§ Expands nodes in increasing total f value (f-contours)
§ Proof idea: optimal goals have lower f value, so get

expanded first

We’re making a stronger
assumption than in the last
proof… What?

Optimality of A* Graph Search
Proof:
§ Main idea: Show nodes are popped

with non-decreasing f-scores
§ for n’ popped after n :

§ f(n’) ≥ f(n)
§ is this enough for optimality?

§ Sketch:
§ assume: f(n’) ≥ f(n), for all edges (n,a,n’) and all actions a

§ is this true?
§ proof: A* never expands nodes with the cost f(n)>C*
§ proof by induction(1) always pop the lowest f-score from the

fringe, (2) all new nodes have larger (or equal) scores, (3) add
them to the fringe, (4) repeat!

Consistency
§ Wait, how do we know parents have better f-values than

their successors?

A

B

G

3
h = 0

h = 10

g = 10

!
§ Consistency for all edges (A,a,B):

§ h(A) ≤ c(A,a,B) + h(B)

§ Proof that f(B) ≥ f(A),
§ f(B)

h = 8

 = f(A) ≥ g(A) + h(A) = g(A) + c(A,a,B) + h(B)= g(B) + h(B)

Optimality

§ Tree search:
§ A* optimal if heuristic is admissible (and non-

negative)
§ UCS is a special case (h = 0)
!

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)
!

§ Consistency implies admissibility
!

§ In general, natural admissible heuristics tend to
be consistent

Summary: A*

§ A* uses both backward costs and
(estimates of) forward costs
!

§ A* is optimal with admissible (and/or
consistent) heuristics
!

§ Heuristic design is key: often use relaxed
problems

A* Applications

§ Pathing / routing problems
§ Resource planning problems
§ Robot motion planning
§ Language analysis
§ Machine translation
§ Speech recognition
§ …

Which Algorithm?

Which Algorithm?

Which Algorithm?

Which Algorithm?

§ Uniform cost search (UCS):

Which Algorithm?

§ A*, Manhattan Heuristic:

Which Algorithm?

§ Best First / Greedy, Manhattan Heuristic:

To Do:

§ Keep up with the readings
§ Get started on PS1
§ it is long; start soon
§due a week from Friday

Optimality of A* Graph Search

§ Consider what A* does:
§ Expands nodes in increasing total f value (f-contours)
§ Proof idea: optimal goals have lower f value, so get

expanded first

We’re making a stronger
assumption than in the last
proof… What?

Optimality of A* Graph Search

§ Consider what A* does:
§ Expands nodes in increasing total f value (f-contours) 

Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
§ Proof idea: the optimal goal(s) have the lowest f

value, so it must get expanded first

…

f ≤ 3

f ≤ 2
f ≤ 1

There’s a problem with this
argument. What are we
assuming is true?

