CSE 473: Artificial Intelligence
Spring 2014

Hanna Hajishirzi
Search with Cost & Heuristics

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Announcement

= PS1 will be on the web soon!
= Start early

Recap: Search

" Search problem:
= States (configurations of the world)
= Successor function; drawn as a graph
= Start state and goal test

= Search tree:

=" Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

General Tree Search

= Search Algorithms:
= Systematically builds a search tree
" Chooses an ordering of the fringe (unexplored
nodes)

" Important ideas:
" Fringe
= Expansion
= Exploration strategy

" Main question: which fringe nodes to
explore?

Outline

= Uninformed Search Methods (part review for some)
" Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

= Heuristic Search Methods (new for all)
= Best First / Greedy Search
m A*

Review

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
queue (a stack)

- Depth First Search

Review: Depth First Search

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,rf,c,a,G)

©)
@%\@ R @
I | /\L
@ @& @r|>qA
P

|
@
@ ©© °
@

Review: Breadth First Search

Strategy: expand
shallowest node
first

Implementation:
Fringe is a FIFO
queue

Review: Breadth First Search

Expansion order:

(S,d,e,p,b,c,e,n,r,q,a,a
,h,r.p,q.f,p,q.f,q,c,G)

” [
Search /QDN R @

- | @O ®o o«
a h r p q f
® SN N
N p q f q ¢ G
Ny |

q C G a
|
a

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

= Time complexity?

= Space complexity?

Variables:
n Number of states in the problem
b The maximum branching factor B

(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm

Complete

Optimal

Time

Space

DFS

Depth First
Search

No

No

Infinite

Infinite

= Infinite paths make DFS incomplete...

= How can we fix this?

= Check new nodes against path from S

* Infinite search spaces still a problem
= |f the left subtree has unbounded depth

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Algorithm Complete |Optimal |Time Space
DFS ¥ cang | Y if finite N O(b™) O(bm)

BFS

Algorithm Complete |Optimal |Time Space
/ Path m
DFS VC\ilhec?king Y N O(b) O(bm)
BFS Y Y* O(b%) O(bY)
(1 node
_ b nodes
d tiers < 02 nodes
x bd nodes
b™ nodes

C

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

7t scwsvocsr oo SIS .

7% Search Strategies Demo

Iterative Deepening

lterative deepening uses DFS as a subroutine: b

1. Do a DFS which only searches for paths of

length 1 or less. / \\
2. If “17 failed, do a DFS which only searches paths / {
of length 2 or less. O

3. If “2" failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete [Optimal [Time Space
oFS i, |y | N [oo O(brm
BFS Y Y* O(bd) O(b%)
ID Y Y* O(bd) O(bd)

Costs on Actions

3

2

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

Uniform Cost Search

Expand
cheapest
node first:

Fringe is a
priority
queue

Uniform Cost Search

" Generalization of breadth-first search
" Priority queue of nodes to be explored
" Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty
Node = head(queue)
If goal?(node) then return node
Add children of node to queue

Priority Queue Refresher

= A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

pg.push(key, value) |inserts (key, value) into the queue.

Pg.pop() returns the key with the lowest value, and
removes it from the queue.

= Unlike a regular queue, insertions aren’t constant time,
usually O(log n)
= We'll need priority queues for cost-sensitive search methods

Uniform Cost Search

Expansion order:
(S,p,d,b,e,a,rf,eG)

Cost (L) 6

contours

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
DFS [wPah ~ Ty N O(bm) O(bm)
BFS Y Y* O(b9) O(bY)
UCS Y* Y O(bC*/g) O(bC*/a)

C*/e tiers <

Uniform Cost Issues

= Remember: explores
Increasing cost contours

* The good: UCS is
complete and optimal!

= The bad:

= Explores options in every

“direction”
= No information about goal
location Goal

Uniform Cost: Pac-Man

= Cost of 1 for each action
= Explores all of the states, but one

Search Heuristics

= Any estimate of how close a state is to a goal
» Designed for a particular search problem

= Examples: Manhattan distance, Euclidean distance

Heuristics

] Oradea

Zerind 151

75
Arad [®
Siblu g9 Fagaras
118 o PP T
80
L Timisoara . Rimnicu Vilcea
1
"1 Lugo) Pitest
70 -
-] Mehadia
75 138
Dobreta [120
- Craiova

Neamt
— 87
J lasi
92
] Vaslui
211 142
98
85 M] Hirsova
Urziceni
" 86
Bucharest
90 I
Eforie
] Giurgiu

)

Straight—line disfance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Glurgiu
Hirsova
Iasi

Lugo)
Mehadia
Neamt
Oradea
Pitesti
Rimnicu V
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

0
160
242
161
178
77
151
226
244
241
234
3R0
98
ilcegd 193
253
329
80
199
374

—
H(x)

Best First / Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Arad [Fftorie 161
Fagaras 178
. Glurgiu 77
e] Vaslui Hirsova 151
|3I\| 226
Timisoara Lugo) 244
142 Mehadia 241
1 Lu Neamt 234
9o} Oradea 380
70 Pitesti 98
'] Hirsova ’
Mehadia Urziceni Rimnicu Vilcea 193
75 -Tilh“; _;23)
misoara 32¢
Dobreta \“1_2_2_‘_ Urziceni 80
Eforie Vaslui 199

M Giurgiu Zerind 374

Best First / Greedy Search

= Expand the node that seems closest...

Arad

366

1 78 380

253 0

= \WWhat can go wrong?

Best First / Greedy Search

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS in the worst
case
= Can explore everything

= Can get stuck in loops if no
cycle checking

= Like DFS in completeness
(finite states w/ cycle
checking)

To Do:

Look at the course website:

» http://www.cs.washington.edu/
cse473/14sp

Do the readings (Ch 3)
Do PSO0 if new to Python

Start PS1, when it is posted
= START PS1 ASAP

