
CSE 473: Artificial Intelligence

Machine Learning: Perceptron

Hanna Hajishirzi

Many slides over the course adapted from Luke Zettlemoyer
and Dan Klein.

1

Exam Topics
§  Search

§  BFS, DFS, UCS, A* (tree and graph)
§  Completeness and Optimality
§  Heuristics: admissibility and

consistency

§  Games
§  Minimax, Alpha-beta pruning,

Expectimax, Evaluation Functions

§  MDPs
§  Bellman equations
§  Value and policy iteration

§  Reinforcement Learning
§  Exploration vs Exploitation
§  Model-based vs. model-free
§  TD learning and Q-learning
§  Linear value function approx.

§  Hidden Markov Models
§  Markov chains
§  Forward algorithm
§  Particle Filter

§  Bayesian Networks
§  Basic definition, independence
§  Variable elimination

§  Sampling (prior, rejection, likelihood)
§  Machine Learning:

§  Naïve Bayes,
§  Perceptron (high level)

General Naïve Bayes
§  A general naive Bayes model:

§  We only specify how each feature depends on the class

Y

F1 Fn F2

§  Total number of parameters is linear in n

Parameter Estimation
§  Estimating distribution of random variables like X or X | Y

§  Elicitation: ask a human!
§  Usually need domain experts, and sophisticated ways of eliciting

probabilities (e.g. betting games)
§  Trouble calibrating

r g g

§  Empirically: use training data
§  For each outcome x, look at the empirical rate of that value:

§  This is the estimate that maximizes the likelihood of the data

Example: Overfitting

2 wins!!

Estimation: Laplace Smoothing

§  Laplace’s estimate:
§  Pretend you saw every outcome once

more than you actually did H H T

Estimation: Laplace Smoothing
§  Laplace’s estimate (extended):

§  Pretend you saw every outcome
k extra times

§  What’s Laplace with k = 0?
§  k is the strength of the prior

H H T

Important Concepts
§  Data: labeled instances, e.g. emails marked spam/ham

§  Training set
§  Held out set
§  Test set

§  Features: attribute-value pairs which characterize each x

§  Experimentation cycle
§  Learn parameters (e.g. model probabilities) on training set
§  (Tune hyperparameters on held-out set)
§  Very important: never “peek” at the test set!

§  Evaluation
§  Compute accuracy of test set
§  Accuracy: fraction of instances predicted correctly

§  Overfitting and generalization
§  Want a classifier which does well on test data
§  Overfitting: fitting the training data very closely, but not

generalizing well

Training
Data

Held-Out
Data

Test
Data

Tuning on Held-Out Data

§  Now we’ve got two kinds of unknowns
§  Parameters: the probabilities P(Y|X), P(Y)
§  Hyperparameters, like the amount of

smoothing to do: k, α

§  Where to learn?
§  Learn parameters from training data
§  Must tune hyperparameters on different

data
§  Why?

§  For each value of the hyperparameters,
train and test on the held-out data

§  Choose the best value and do a final test
on the test data

Baselines
§  First step: get a baseline

§  Baselines are very simple “straw man” procedures
§  Help determine how hard the task is
§  Help know what a “good” accuracy is

§  Weak baseline: most frequent label classifier
§  Gives all test instances whatever label was most common in the

training set
§  E.g. for spam filtering, might label everything as ham
§  Accuracy might be very high if the problem is skewed
§  E.g. calling everything “ham” gets 66%, so a classifier that gets

70% isn’t very good…

§  For real research, usually use previous work as a
(strong) baseline

Confidences from a Classifier
§  The confidence of a probabilistic classifier:

§  Posterior over the top label

§  Represents how sure the classifier is of the
classification

§  Any probabilistic model will have
confidences

§  No guarantee confidence is correct

§  Calibration
§  Weak calibration: higher confidences mean

higher accuracy
§  Strong calibration: confidence predicts

accuracy rate
§  What’s the value of calibration?

Precision vs. Recall
§  Let’s say we want to classify web pages as

 homepages or not
§  In a test set of 1K pages, there are 3 homepages
§  Our classifier says they are all non-homepages
§  99.7 accuracy!
§  Need new measures for rare positive events

§  Precision: fraction of guessed positives which were actually positive

§  Recall: fraction of actual positives which were guessed as positive

§  Say we detect 5 spam emails, of which 2 were actually spam, and we
missed one
§  Precision: 2 correct / 5 guessed = 0.4
§  Recall: 2 correct / 3 true = 0.67

§  Which is more important in customer support email automation?
§  Which is more important in airport face recognition?

-

guessed +

actual +

Precision vs. Recall

§  Precision/recall tradeoff
§  Often, you can trade off

precision and recall

§  To summarize the tradeoff:
§  Break-even point: precision

value when p = r
§  F-measure: harmonic mean

of p and r:

Errors, and What to Do

§  Examples of errors
Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate,
click through to

 http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .

What to Do About Errors?
§  Need more features– words aren’t enough!

§  Have you emailed the sender before?
§  Have 1K other people just gotten the same email?
§  Is the sending information consistent?
§  Is the email in ALL CAPS?
§  Do inline URLs point where they say they point?
§  Does the email address you by (your) name?

§  Can add these information sources as new variables in
the NB model

§  Classifiers which let you easily add arbitrary features
more easily

Summary
§  Bayes rule lets us do diagnostic queries with causal

probabilities

§  The naïve Bayes assumption takes all features to be
independent given the class label

§  We can build classifiers out of a naïve Bayes model
using training data

§  Smoothing estimates is important in real systems

Generative vs. Discriminative

§  Generative classifiers:
§  E.g. naïve Bayes
§  A joint probability model with evidence variables
§  Query model for causes given evidence

§  Discriminative classifiers:
§  No generative model, no Bayes rule, often no

probabilities at all!
§  Try to predict the label Y directly from X
§  Robust, accurate with varied features
§  Loosely: mistake driven rather than model driven

Some (Simplified) Biology
§  Very loose inspiration: human neurons

Linear Classifiers

§  Inputs are feature values
§  Each feature has a weight
§  Sum is the activation

§  If the activation is:
§  Positive, output +1
§  Negative, output -1

Σ	

f1

f2

f3

w1

w2

w3
>0?

Example: Spam
§  Imagine 4 features (spam is “positive” class):

§  free (number of occurrences of “free”)
§  money (occurrences of “money”)
§  BIAS (intercept, always has value 1)

BIAS : -3
free : 4
money : 2
...

BIAS : 1
free : 1
money : 1
...

“free money”

Binary Decision Rule
§  In the space of feature vectors

§  Examples are points
§  Any weight vector is a hyperplane
§  One side corresponds to Y=+1
§  Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Binary Perceptron Algorithm
§  Start with zero weights
§  For each training instance:

§  Classify with current weights

§  If correct (i.e., y=y*), no change!
§  If wrong: adjust the weight vector

by adding or subtracting the
feature vector. Subtract if y* is -1.

Examples: Perceptron

§  Separable Case

Examples: Perceptron
§  Separable Case

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

Examples: Perceptron
§  Inseparable Case

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

Multiclass Decision Rule

§  If we have more than
two classes:
§  Have a weight vector for

each class:
§  Calculate an activation for

each class

§  Highest activation wins

Example

BIAS :
win :
game :
vote :
the :
...

BIAS :
win :
game :
vote :
the :
...

BIAS :
win :
game :
vote :
the :
...

“win the vote”

“win the election”

“win the game”

Example

BIAS : -2
win : 4
game : 4
vote : 0
the : 0
...

BIAS : 1
win : 2
game : 0
vote : 4
the : 0
...

BIAS : 2
win : 0
game : 2
vote : 0
the : 0
...

“win the vote”

BIAS : 1
win : 1
game : 0
vote : 1
the : 1
...

The Multi-class Perceptron Alg.
§  Start with zero weights
§  Iterate training examples

§  Classify with current weights

§  If correct, no change!
§  If wrong: lower score of wrong

answer, raise score of right answer

Examples: Perceptron

§  Separable Case

Mistake-Driven Classification

§  For Naïve Bayes:
§  Parameters from data statistics
§  Parameters: probabilistic interpretation
§  Training: one pass through the data

§  For the perceptron:
§  Parameters from reactions to mistakes
§  Parameters: discriminative

interpretation
§  Training: go through the data until

held-out accuracy maxes out

Training
Data

Held-Out
Data

Test
Data

Properties of Perceptrons
§  Separability: some parameters get

the training set perfectly correct

§  Convergence: if the training is
separable, perceptron will
eventually converge (binary case)

§  Mistake Bound: the maximum
number of mistakes (binary case)
related to the margin or degree of
separability

Separable

Non-Separable

Problems with the Perceptron
§  Noise: if the data isn’t

separable, weights might thrash
§  Averaging weight vectors over time

can help (averaged perceptron)

§  Mediocre generalization: finds a
“barely” separating solution

§  Overtraining: test / held-out
accuracy usually rises, then falls
§  Overtraining is a kind of overfitting

Fixing the Perceptron
§  Idea: adjust the weight update to

mitigate these effects

§  MIRA*: choose an update size that
fixes the current mistake…

§  … but, minimizes the change to w

§  The +1 helps to generalize
* Margin Infused Relaxed Algorithm

Minimum Correcting Update

min not τ=0, or would not have
made an error, so min will be
where equality holds

Maximum Step Size
§  In practice, it’s also bad to make updates

that are too large
§  Example may be labeled incorrectly
§  You may not have enough features
§  Solution: cap the maximum possible

value of τ with some constant C

§  Corresponds to an optimization that
assumes non-separable data

§  Usually converges faster than perceptron
§  Usually better, especially on noisy data

Linear Separators
§  Which of these linear separators is optimal?

Support Vector Machines
§  Maximizing the margin: good according to intuition, theory, practice
§  Only support vectors matter; other training examples are ignorable
§  Support vector machines (SVMs) find the separator with max

margin
§  Basically, SVMs are MIRA where you optimize over all examples at

once
MIRA

SVM

Classification: Comparison

§  Naïve Bayes
§  Builds a model training data
§  Gives prediction probabilities
§  Strong assumptions about feature independence
§  One pass through data (counting)

§  Perceptrons / MIRA:
§  Makes less assumptions about data
§  Mistake-driven learning
§  Multiple passes through data (prediction)
§  Often more accurate

Extension: Web Search

§  Information retrieval:
§  Given information needs,

produce information
§  Includes, e.g. web

search, question
answering, and classic IR

§  Web search: not exactly
classification, but rather
ranking

x = “Apple Computers”

Feature-Based Ranking
x = “Apple Computers”

x,

x,

Perceptron for Ranking

§  Inputs
§  Candidates
§  Many feature vectors:
§  One weight vector:

§  Prediction:

§  Update (if wrong):

Pacman Apprenticeship!
§  Examples are states s

§  Candidates are pairs (s,a)
§  “Correct” actions: those taken by expert
§  Features defined over (s,a) pairs: f(s,a)
§  Score of a q-state (s,a) given by:

§  How is this VERY different from reinforcement learning?

“correct”
action a*

