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Exam Topics 
§  Search 

§  BFS, DFS, UCS, A* (tree and graph) 
§  Completeness and Optimality 
§  Heuristics: admissibility and 

consistency 

§  Games 
§  Minimax, Alpha-beta pruning, 

Expectimax, Evaluation Functions 

§  MDPs 
§  Bellman equations 
§  Value and policy iteration 

§  Reinforcement Learning 
§  Exploration vs Exploitation 
§  Model-based vs. model-free 
§  TD learning and Q-learning 
§  Linear value function approx. 

§  Hidden Markov Models 
§  Markov chains 
§  Forward algorithm 
§  Particle Filter 

§  Bayesian Networks 
§  Basic definition, independence 
§  Variable elimination 

§  Sampling (prior, rejection, likelihood) 
§  Machine Learning: 

§  Naïve Bayes,  
§  Perceptron (high level) 

 

 



General Naïve Bayes 
§  A general naive Bayes model: 

§  We only specify how each feature depends on the class 

Y 

F1 Fn F2 

§  Total number of parameters is linear in n 



Parameter Estimation 
§  Estimating distribution of random variables like X or X | Y 

§  Elicitation: ask a human! 
§  Usually need domain experts, and sophisticated ways of eliciting 

probabilities (e.g. betting games) 
§  Trouble calibrating 

r g g 

§  Empirically: use training data 
§  For each outcome x, look at the empirical rate of that value: 

§  This is the estimate that maximizes the likelihood of the data 



Example: Overfitting 

2 wins!! 



Estimation: Laplace Smoothing 

§  Laplace’s estimate: 
§  Pretend you saw every outcome once 

more than you actually did H H T 



Estimation: Laplace Smoothing 
§  Laplace’s estimate (extended): 

§  Pretend you saw every outcome 
k extra times 

§  What’s Laplace with k = 0? 
§  k is the strength of the prior 

H H T 



Important Concepts 
§  Data: labeled instances, e.g. emails marked spam/ham 

§  Training set 
§  Held out set 
§  Test set 

§  Features: attribute-value pairs which characterize each x 
 

§  Experimentation cycle 
§  Learn parameters (e.g. model probabilities) on training set 
§  (Tune hyperparameters on held-out set) 
§  Very important: never “peek” at the test set! 

§  Evaluation 
§  Compute accuracy of test set 
§  Accuracy: fraction of instances predicted correctly 

§  Overfitting and generalization 
§  Want a classifier which does well on test data 
§  Overfitting: fitting the training data very closely, but not 

generalizing well 

Training 
Data 

Held-Out 
Data 

Test 
Data 



Tuning on Held-Out Data 

§  Now we’ve got two kinds of unknowns 
§  Parameters: the probabilities P(Y|X), P(Y) 
§  Hyperparameters, like the amount of 

smoothing to do: k, α 

§  Where to learn? 
§  Learn parameters from training data 
§  Must tune hyperparameters on different 

data 
§  Why? 

§  For each value of the hyperparameters, 
train and test on the held-out data 

§  Choose the best value and do a final test 
on the test data 



Baselines 
§  First step: get a baseline 

§  Baselines are very simple “straw man” procedures 
§  Help determine how hard the task is 
§  Help know what a “good” accuracy is 

§  Weak baseline: most frequent label classifier 
§  Gives all test instances whatever label was most common in the 

training set 
§  E.g. for spam filtering, might label everything as ham 
§  Accuracy might be very high if the problem is skewed 
§  E.g. calling everything “ham” gets 66%, so a classifier that gets 

70% isn’t very good… 

§  For real research, usually use previous work as a 
(strong) baseline 



Confidences from a Classifier 
§  The confidence of a probabilistic classifier: 

§  Posterior over the top label 

§  Represents how sure the classifier is of the 
classification 

§  Any probabilistic model will have 
confidences 

§  No guarantee confidence is correct 

§  Calibration 
§  Weak calibration: higher confidences mean 

higher accuracy 
§  Strong calibration: confidence predicts 

accuracy rate 
§  What’s the value of calibration? 



Precision vs. Recall 
§  Let’s say we want to classify web pages as 

 homepages or not 
§  In a test set of 1K pages, there are 3 homepages 
§  Our classifier says they are all non-homepages 
§  99.7 accuracy! 
§  Need new measures for rare positive events 

§  Precision: fraction of guessed positives which were actually positive 

§  Recall: fraction of actual positives which were guessed as positive 

§  Say we detect 5 spam emails, of which 2 were actually spam, and we 
missed one 
§  Precision: 2 correct / 5 guessed = 0.4 
§  Recall: 2 correct / 3 true = 0.67 

§  Which is more important in customer support email automation? 
§  Which is more important in airport face recognition? 

- 

guessed + 

actual + 



Precision vs. Recall 

§  Precision/recall tradeoff 
§  Often, you can trade off 

precision and recall 

§  To summarize the tradeoff: 
§  Break-even point: precision 

value when p = r 
§  F-measure: harmonic mean 

of p and r: 



Errors, and What to Do 

§  Examples of errors 
Dear GlobalSCAPE Customer,  

GlobalSCAPE has partnered with ScanSoft to offer you the 
latest version of OmniPage Pro, for just $99.99* - the regular 
list price is $499! The most common question we've received 
about this offer is - Is this genuine? We would like to assure 
you that this offer is authorized by ScanSoft, is genuine and 
valid. You can get the . . . 

. . . To receive your $30 Amazon.com promotional certificate, 
click through to 

  http://www.amazon.com/apparel 

and see the prominent link for the $30 offer. All details are 
there. We hope you enjoyed receiving this message. However, if 
you'd rather not receive future e-mails announcing new store 
launches, please click . . . 



What to Do About Errors? 
§  Need more features– words aren’t enough! 

§  Have you emailed the sender before? 
§  Have 1K other people just gotten the same email? 
§  Is the sending information consistent?  
§  Is the email in ALL CAPS? 
§  Do inline URLs point where they say they point? 
§  Does the email address you by (your) name? 

§  Can add these information sources as new variables in 
the NB model 

§  Classifiers which let you easily add arbitrary features 
more easily 



Summary 
§  Bayes rule lets us do diagnostic queries with causal 

probabilities 

§  The naïve Bayes assumption takes all features to be 
independent given the class label 

§  We can build classifiers out of a naïve Bayes model 
using training data 

§  Smoothing estimates is important in real systems 



Generative vs. Discriminative 

§  Generative classifiers: 
§  E.g. naïve Bayes 
§  A joint probability model with evidence variables 
§  Query model for causes given evidence 

§  Discriminative classifiers: 
§  No generative model, no Bayes rule, often no 

probabilities at all! 
§  Try to predict the label Y directly from X 
§  Robust, accurate with varied features 
§  Loosely: mistake driven rather than model driven 



Some (Simplified) Biology 
§  Very loose inspiration: human neurons 



Linear Classifiers 

§  Inputs are feature values 
§  Each feature has a weight 
§  Sum is the activation 

§  If the activation is: 
§  Positive, output +1 
§  Negative, output -1 

Σ	

f1 

f2 

f3 

w1 

w2 

w3 
>0? 



Example: Spam 
§  Imagine 4 features (spam is “positive” class): 

§  free (number of occurrences of “free”) 
§  money (occurrences of “money”) 
§  BIAS (intercept, always has value 1) 

BIAS  : -3 
free  :  4 
money :  2 
... 

BIAS  :  1 
free  :  1 
money :  1 
... 

“free money” 



Binary Decision Rule 
§  In the space of feature vectors 

§  Examples are points 
§  Any weight vector is a hyperplane 
§  One side corresponds to Y=+1 
§  Other corresponds to Y=-1 

BIAS  : -3 
free  :  4 
money :  2 
... 0 1 

0 

1 

2 

free 
m

on
ey

 

+1 = SPAM 

-1 = HAM 



Binary Perceptron Algorithm 
§  Start with zero weights 
§  For each training instance: 

§  Classify with current weights 

§  If correct (i.e., y=y*), no change! 
§  If wrong: adjust the weight vector 

by adding or subtracting the 
feature vector. Subtract if y* is -1. 



Examples: Perceptron 

§  Separable Case 



Examples: Perceptron 
§  Separable Case 

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html 



Examples: Perceptron 
§  Inseparable Case 

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html 



Multiclass Decision Rule 

§  If we have more than 
two classes: 
§  Have a weight vector for 

each class: 
§  Calculate an activation for 

each class 

§  Highest activation wins 



Example 

BIAS  : 
win   :   
game  :   
vote  :   
the   :    
... 

BIAS  :   
win   :   
game  :   
vote  :   
the   :    
... 

BIAS  :   
win   :   
game  :   
vote  :   
the   :    
... 

“win the vote” 

“win the election” 

“win the game” 



Example 

BIAS  : -2 
win   :  4 
game  :  4 
vote  :  0 
the   :  0  
... 

BIAS  :  1 
win   :  2 
game  :  0 
vote  :  4 
the   :  0  
... 

BIAS  :  2 
win   :  0 
game  :  2 
vote  :  0 
the   :  0  
... 

“win the vote” 

BIAS  :  1 
win   :  1 
game  :  0 
vote  :  1 
the   :  1 
... 



The Multi-class Perceptron Alg. 
§  Start with zero weights 
§  Iterate training examples 

§  Classify with current weights 

§  If correct, no change! 
§  If wrong: lower score of wrong 

answer, raise score of right answer 



Examples: Perceptron 

§  Separable Case 



Mistake-Driven Classification 

§  For Naïve Bayes: 
§  Parameters from data statistics 
§  Parameters: probabilistic interpretation 
§  Training: one pass through the data 

§  For the perceptron: 
§  Parameters from reactions to mistakes 
§  Parameters: discriminative 

interpretation 
§  Training: go through the data until 

held-out accuracy maxes out 

Training 
Data 

Held-Out 
Data 

Test 
Data 



Properties of Perceptrons 
§  Separability: some parameters get 

the training set perfectly correct 

§  Convergence: if the training is 
separable, perceptron will 
eventually converge (binary case) 

§  Mistake Bound: the maximum 
number of mistakes (binary case) 
related to the margin or degree of 
separability 

Separable 

Non-Separable 



Problems with the Perceptron 
§  Noise: if the data isn’t 

separable, weights might thrash 
§  Averaging weight vectors over time 

can help (averaged perceptron) 

§  Mediocre generalization: finds a 
“barely” separating solution 

§  Overtraining: test / held-out 
accuracy usually rises, then falls 
§  Overtraining is a kind of overfitting 



Fixing the Perceptron 
§  Idea: adjust the weight update to 

mitigate these effects 

§  MIRA*: choose an update size that 
fixes the current mistake… 

§  … but, minimizes the change to w 

§  The +1 helps to generalize 
* Margin Infused Relaxed Algorithm 



Minimum Correcting Update 

min not τ=0, or would not have 
made an error, so min will be 
where equality holds 



Maximum Step Size 
§  In practice, it’s also bad to make updates 

that are too large 
§  Example may be labeled incorrectly 
§  You may not have enough features 
§  Solution: cap the maximum possible 

value of τ with some constant C 

§  Corresponds to an optimization that 
assumes non-separable data 

§  Usually converges faster than perceptron 
§  Usually better, especially on noisy data 



Linear Separators 
§  Which of these linear separators is optimal?  



Support Vector Machines 
§  Maximizing the margin: good according to intuition, theory, practice 
§  Only support vectors matter; other training examples are ignorable  
§  Support vector machines (SVMs) find the separator with max 

margin 
§  Basically, SVMs are MIRA where you optimize over all examples at 

once 
MIRA 

SVM 



Classification: Comparison 

§  Naïve Bayes 
§  Builds a model training data 
§  Gives prediction probabilities 
§  Strong assumptions about feature independence 
§  One pass through data (counting) 

§  Perceptrons / MIRA: 
§  Makes less assumptions about data 
§  Mistake-driven learning 
§  Multiple passes through data (prediction) 
§  Often more accurate 



Extension: Web Search 

§  Information retrieval: 
§  Given information needs, 

produce information 
§  Includes, e.g. web 

search, question 
answering, and classic IR 

§  Web search: not exactly 
classification, but rather 
ranking 

x = “Apple Computers” 



Feature-Based Ranking 
x = “Apple Computers” 

x, 

x, 



Perceptron for Ranking 

§  Inputs     
§  Candidates 
§  Many feature vectors:  
§  One weight vector: 

§  Prediction: 

§  Update (if wrong): 



Pacman Apprenticeship! 
§  Examples are states s 

§  Candidates are pairs (s,a) 
§  “Correct” actions: those taken by expert 
§  Features defined over (s,a) pairs: f(s,a) 
§  Score of a q-state (s,a) given by: 

§  How is this VERY different from reinforcement learning? 

“correct” 
action a* 


