CSE 473: Artificial Intelligence

Bayesian Networks

Hanna Hajishirzi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or
Andrew Moore



Outline

* Probabilistic models (and inference)
» Bayesian Networks (BNSs)
* |Independence in BNs



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Independence

= Two variables are independent if:
Va,y 1 P(z,y) = P(z)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Va,y : P(zly) = P(x)

= Wewrite: X || YV

» |[ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent
» What could we assume for {Weather, Traffic, Cavity, Toothache}?



= N fair, independent coin flips:

Example: Independence

P(X1) P(X>2) P(Xn)
h |05 h |05 h |05
t 1 0.5 t 1 0.5 t 1 0.5
= —
—
. P(X1,Xa,...
2™

\



Conditional Independence

» Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:
Vr,y,z . P(x,y|z) = P(x|z)P(y|z
y (z,y]2) (z]2) P(y|z) XY|Z
Va,y, 2z P(zlz,y) = P(z|2)

= \What about these domain:
= Traffic, Umbrella, Raining
= Toothache, Cavity, Catch



Conditional Independence and the
Chain Rule

= Trivial decomposition:
P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|lRain) P(Umbrella|Rain, Traffic)
= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’ nets/ graphical models help us express
conditional independence assumptions



Ghostbusters Chain Rule

= 2-position maze, each sensor

indicates ghost location P(T,B,G) = P(G) P(T|G) P(B|G)
= T:Top square is red T B G P(T,B,G)
B: Bottom square is red
G: Ghost is in the top +t +b| +g 0.16
+1 +b -g 0.16
= That means, the two sensors
are conditionally independent, +t -b +g 0.24
given the ghost position
+t -b| =g 0.04
= Can assume: _t + +
P(+t |+g)=0.8 -t +b| -g 0.24
P(+t |-g)=04
P( +b +§))= 0.4 -t| =b| +g 0.06
Pé +b|-g)=0.8

~t| -b| -g| 0.06




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

* Hard to learn (estimate) anything empirically about more than a
few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
= More properly called graphical models
= \We describe how variables locally interact

= |ocal interactions chain together to give global, indirect
interactions



Notation

* Nodes: variables (with

domains)
— Can be assigned (observed) or

— unassigned (unobserved)

 Arcs: interactions - @
. . _ , Toothache
— Indicate “direct influence

between variables
— Formally: encode conditional

independence (more later)
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Example: Flip Coins

* N independent flip coins

& & <D

e No interactions between variables

— Absolute independence
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Example Bayes’' Net: Car




Example Bayes’ Net: Insurance




Example: Traffic

= \ariables:
= R: |t rains
= T: There is traffic

= Model 1: independence

= Model 2: rain is conditioned on traffic
= Why is an agent using model 2 better?
= Model 3: traffic is conditioned on rain

= |s this better than model 27



Example: Traffic Il

= | et’s build a graphical model

= Variables
= T: Traffic
= R:ltrains
= |L: Low pressure
* D: Roof drips
= B: Ballgame
= C: Cavity



Example: Alarm Network

* Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J: John calls
» E: Earthquake!



Bayes’ Net Semantics

= [et’'s formalize the semantics of a
Bayes’ net @ v @

= A set of nodes, one per variable X

= Adirected, acyclic graph

= A conditional distribution for each node :%
= A collection of distributions over X, one for
each combination of parents’ values P(X|A1...Ap)
P(Xl|aqy...an)

= CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

* To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(z1,x2,...zn) = || P(z;|parents(X;))
i=1
= This lets us reconstruct any entry of the full joint

= Not every BN can represent every joint distribution
» The topology enforces certain independence assumptions
= Compare to the exact decomposition according to the chain rule!



Probabilities in BN

Why are we guaranteed that setting

n
P(xq1,20,...2pn) = H P(z;|parents(X;))
i=1
results in a proper joint distribution?

n
Chain rule (valid for all distributions): P(z1,22,...2n) = || P(zlz1.. . xi—1)
i=1

Assume conditional independences: P(x;|z1,...2;_1) = P(x;|parents(X;))

n
- Consequence:  P(wz1,zp,...xn) = [[| P(z|parents(X;))
i=1

Not every BN can represent every joint distribution

* The topology enforces certain conditional independencies
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Bayes Net Probabillities

* Bayes nets compactly represent joint
distributions (instead of big joint table)

— A joint distribution using chain rule

P(x,..x )= HP(xl. | parents(x,))

e {Cavity, Toothache, Catch}

P(Cavity, Toothache, ~Catch) ?
P(Cavity, Toothache, ~Catch) =

P(cavity)P(toothache | cavity)
P(~catch|cavity) @



Example: Flip Coins

* N independent flip coins

& & <D

Head 0.5 Head 0.5 Head 0.5
Tail 0.5 Tail 0.5 Tail 0.5

 P(h,h,t,h)? = No interactions between
e variables: absolute
independence 01



Example: Traffic

P(R)

+r

1/4

-r

3/4

+r

P(T|R)

+t

3/4

-t

1/4

+t

1/2

-t

1/2

P(+r,—t) =
P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16
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Example: Alarm Network

0.002

_b 10.999 -e [0.998

E A P(A|B,E)

A P(J|A) +e | +a 0.95
+a |+ (0.9 te | ~a g'gi

i -e | +a .
a0 0.1 ta |+m |0.7 ~e| -a| 0.06
—a +J. gg: +a |-m |0.3 +e | +3 0.29
—d | 7] - -a |+m |0.01 +e | =3 0.71
P(+b, —e, +a,—j,+m) = -e | -a 0.999

P(+b)P(—e)P(+a| + b, —e)P(—j| + a)P(+m| + a) =
0.001 x 0.998 x 0.94 x 0.1 x 0.7



Changing Bayes’ Net Structure

= The same joint distribution can be
encoded in many different Bayes’ nets

= Analysis question: given some edges,
what other edges do you need to add?
= One answer: fully connect the graph

= Better answer: don’'t make any false
conditional independence assumptions



Example: Independence

= For this graph, you can fiddle with 6 (the CPTs) all you
want, but you won’t be able to represent any distribution

iIn which the flips are dependent!

OO

P(X1) P(X>)
h |05 h 0.5
t 105 t 0.5

X1 1 X5

All distributions



= Extra arcs don’t prevent representing

Example: Coins

iIndependence, just allow non-independence

OO

(O—(%)

P(X2|X1)

P(X1) P(X>)
h | 0.5 h | 0.5
t | 0.5 t | 0.5

P(X1)
h | 0.5
t | 0.5

h|h

0.5

= Adding unneeded arcs isn't
wrong, it's just inefficient

t|h

0.5

h|t

0.5

£t

0.5




Size of a Bayes Net

= How big is a joint distribution over N = Both give you the power to calculate

Boolean variables?
N P(X1,X5,...Xn)

BNs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1)

Also easier to elicit local CPTs

Also faster to answer queries (coming)
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Bayes Nets

= So far: how a Bayes net encodes a joint
distribution

= Next: how to answer queries about that
distribution

= Today:
= First assembled BNs using an intuitive notion of
conditional independence as causality

= Then saw that key property is conditional independence

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)



