CSE 473: Artificial Intelligence

Bayesian Networks

Hanna Hajishirzi

Many slides over the course adapted from either Luke Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic models (and inference)
 - Bayesian Networks (BNs)
 - Independence in BNs

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

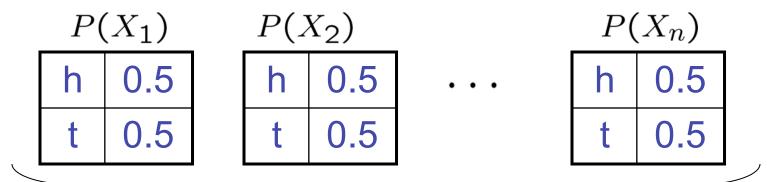
- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp\!\!\!\perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence

N fair, independent coin flips:



$$2^n \left\{ \begin{array}{c} P(X_1, X_2, \dots X_n) \\ \hline \end{array} \right.$$

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\!\perp Y|Z$$

- What about these domain:
 - Traffic, Umbrella, Raining
 - Toothache, Cavity, Catch

Conditional Independence and the Chain Rule

Trivial decomposition:

```
P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})
```

With assumption of conditional independence:

```
P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})
```

 Bayes' nets/ graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- 2-position maze, each sensor indicates ghost location
- P(T,B,G) = P(G) P(T|G) P(B|G)

- T: Top square is redB: Bottom square is redG: Ghost is in the top
- That means, the two sensors are conditionally independent, given the ghost position
- Can assume:

T	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	¬g	0.16
+t	¬b	+g	0.24
+t	¬b	¬g	0.04
¬t	+b	+g	0.04
¬t	+b	¬g	0.24
¬t	¬b	+g	0.06
−t	¬b	¬g	0.06

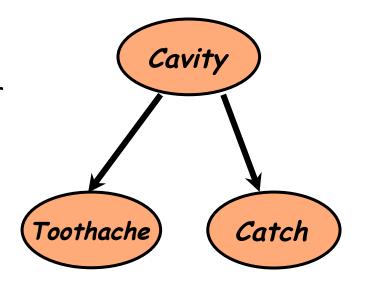
Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or
 - unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence"
 between variables
 - Formally: encode conditional independence (more later)

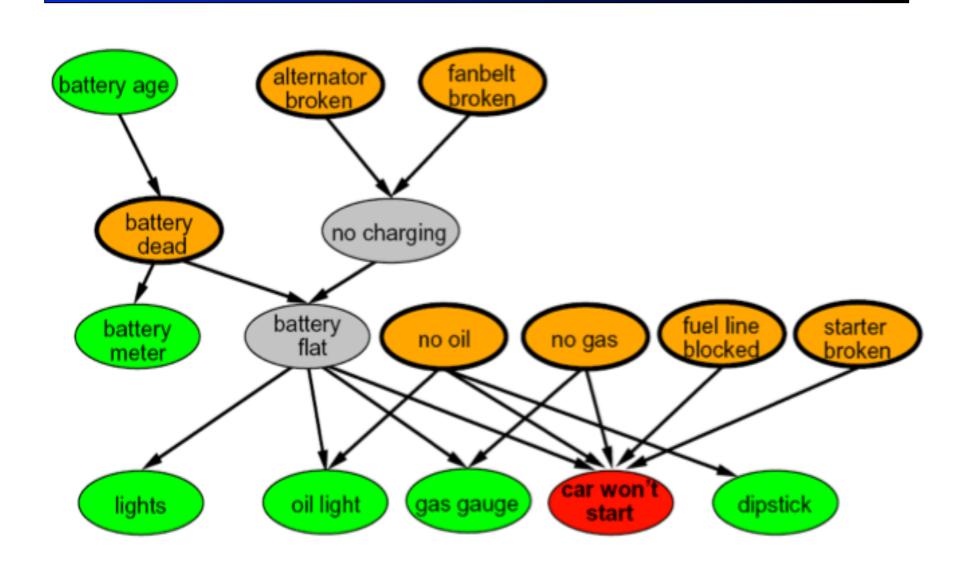


Example: Flip Coins

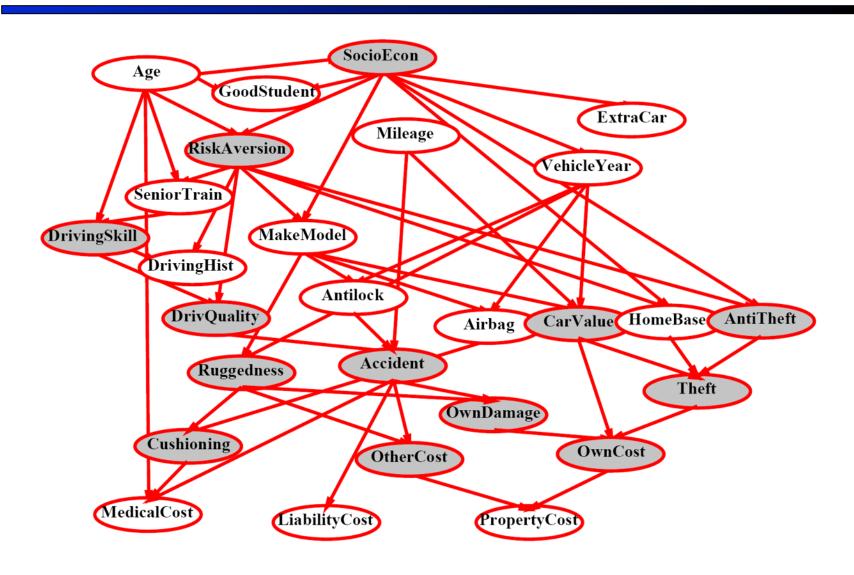
N independent flip coins

- No interactions between variables
 - Absolute independence

Example Bayes' Net: Car



Example Bayes' Net: Insurance



Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence
- Model 2: rain is conditioned on traffic
 - Why is an agent using model 2 better?
- Model 3: traffic is conditioned on rain
 - Is this better than model 2?

Example: Traffic II

Let's build a graphical model

Variables

- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

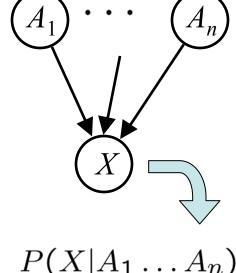
Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$



 $P(X|A_1 \ldots A_n)$

CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain independence assumptions
 - Compare to the exact decomposition according to the chain rule!

Probabilities in BN

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$

→ Consequence:
$$P(x_1, x_2, ... x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

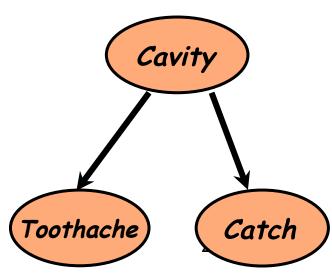
Bayes Net Probabilities

- Bayes nets compactly represent joint distributions (instead of big joint table)
 - A joint distribution using chain rule

$$P(x_1...x_n) = \prod_i P(x_i \mid parents(x_i))$$

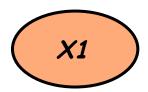
{Cavity, Toothache, Catch}
 P(Cavity, Toothache, ~Catch) ?

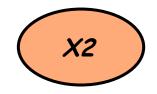
P(Cavity, Toothache, ~Catch) = P(cavity)P(toothache|cavity) P(~catch|cavity)

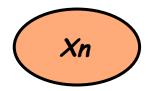


Example: Flip Coins

N independent flip coins







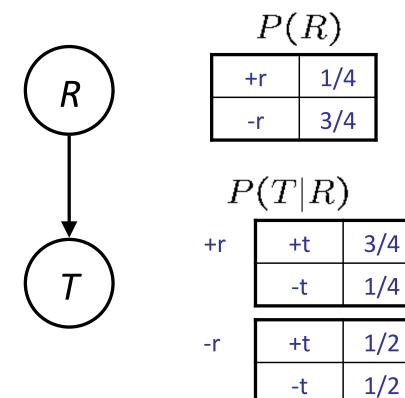
	P
Head	0.5
Tail	0.5

	P
Head	0.5
Tail	0.5

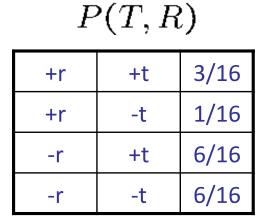
	P
Head	0.5
Tail	0.5

- P(h,h,t,h)?
- No interactions between variables: absolute independence

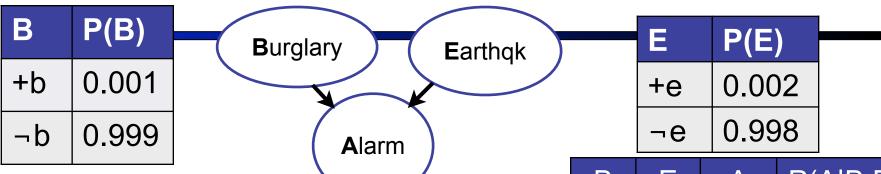
Example: Traffic



$$P(+r,-t) =$$



Example: Alarm Network



Mary

Α	J	P(J A)
+a	+j	0.9
+a	¬j	0.1
¬а	+j	0.05
¬a	¬j	0.95

C	alls	<u> </u>	calls
	Α	M	P(M A)
	+a	+m	0.7
	+a	¬m	0.3
	¬a	+m	0.01
	¬a	¬m	0.99

J 3 5 5	¬a	+m	0.01	
	¬a	¬m	0.99	
P(+b, -e, +a, -j, +m)	•			
P(+b)P(-e)P(+a +b,-e)	P(-j)	+a)P(+m +a) =	
$0.001 \times 0.998 \times 0.94 \times 0.1$	$\times 0.7$			

John

Ш	A	P(A B,E)
+e	+a	0.95
+e	¬а	0.05
¬е	+a	0.94
¬е	¬а	0.06
+e	+a	0.29
+e	га	0.71
е	+a	0.001
¬е	¬a	0.999
	+ e + e + e + e	+e +a +e ¬a ¬e +a ¬e ¬a +e +a +e ¬a -e +a -e +a

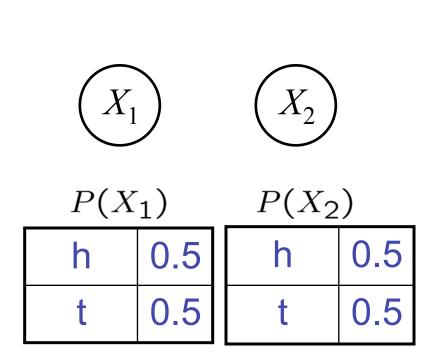
Changing Bayes' Net Structure

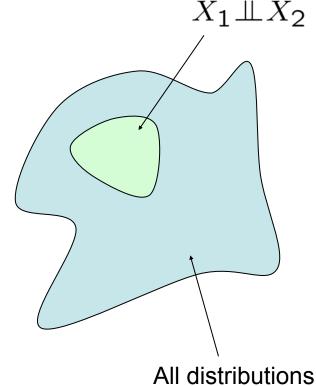
 The same joint distribution can be encoded in many different Bayes' nets

- Analysis question: given some edges, what other edges do you need to add?
 - One answer: fully connect the graph
 - Better answer: don't make any false conditional independence assumptions

Example: Independence

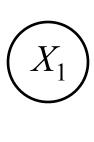
For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

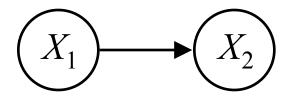




Example: Coins

 Extra arcs don't prevent representing independence, just allow non-independence





$$P(X_1)$$

h	0.5
t	0.5

$$P(X_2)$$

h	0.5
t	0.5

$$P(X_1)$$

h	0.5
t	0.5

$$P(X_2|X_1)$$

h	h	0.5
t	h	0.5

 Adding unneeded arcs isn't wrong, it's just inefficient

h	t	0.5
t l t		0.5

Size of a Bayes Net

How big is a joint distribution over N Boolean variables?

 2^N

How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)