
CSE 473: Artificial Intelligence
Spring 2014

Hidden Markov Models &
Particle Filtering

Hanna Hajishirzi

Many slides adapted from Dan Weld, Pieter Abbeel, Dan Klein,
Stuart Russell, Andrew Moore & Luke Zettlemoyer

1

Outline

§  Probabilistic sequence models (and inference)
§  Probability and Uncertainty – Preview
§  Markov Chains
§  Hidden Markov Models
§  Exact Inference
§  Particle Filters
§  Applications

3

Example
§  A robot move in a discrete grid

§  May fail to move in the desired direction with some probability
§  Observation from noisy sensor at each time

§  Is a function of robot position
§  Goal: Find the robot position (probability that a robot is at

a specific position)
§  Cannot always compute this probability exactly
è Approximation methods

Here: Approximate a distribution by sampling

4

Hidden Markov Model
§  State Space Model

§ Hidden states: Modeled as a Markov Process
P(x0), P(xk | xk-1)
§ Observations: ek

P(ek | xk)

x0

y0

x1

y1

xn

yn

P(e0|x0)

P(x1|x0)

…

Position of the robot

Observed position from
the sensor

Exact Solution:
 Forward Algorithm

§  Filtering is the inference process of finding a distribution
over XT given e1 through eT : P(XT | e1:t)

§  We first compute P(X1 | e1):
§  For each t from 2 to T, we have P(Xt-1 | e1:t-1)
§  Elapse time: compute P(Xt | e1:t-1)

§  Observe: compute P(Xt | e1:t-1 , et) = P(Xt | e1:t)

Approximate Inference:

6

§  Sometimes |X| is too big for exact inference
§  |X| may be too big to even store B(X)
§  E.g. when X is continuous
§  |X|2 may be too big to do updates

§  Solution: approximate inference by sampling
§  How robot localization works in practice

7

What is Sampling?

§  Goal: Approximate the
original distribution:

§  Approximate with Gaussian
distribution

§  Draw samples from a
distribution close enough to
the original distribution

§  Here: A general framework
for a sampling method

8

Approximate Solution:
Perfect Sampling

)|(:0:0 nn yxp
Assume we can sample
from the original distribution Particle 1

Particle N

1
:0 nx

N
nx :0

Time 1 Time n

.

.

Number of samples that match
with query N

yxP nn
1)|(:0:0 =

Converges to the exact value
for large N

Robot path till time n

Approximate Inference:
Particle Filtering

§  Solution: approximate inference
§  Track samples of X, not all values
§  Samples are called particles
§  Time per step is linear in the number of samples
§  But: number needed may be large
§  In memory: list of particles, not states

§  How robot localization works in practice

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

Representation: Particles
§  Our representation of P(X) is now

a list of N particles (samples)
§  Generally, N << |X|
§  Storing map from X to counts

would defeat the point

§  P(x) approximated by number of
particles with value x
§  So, many x will have P(x) = 0!
§  More particles, more accuracy

§  For now, all particles have a
weight of 1

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (2,1)
 (3,3)
 (3,3)
 (2,1)

Particle Filtering: Elapse Time
§  Each particle is moved by sampling

its next position from the transition
model

§  This is like prior sampling – samples’
frequencies reflect the transition probs

§  Here, most samples move clockwise, but
some move in another direction or stay in
place

§  This captures the passage of time
§  If we have enough samples, close to the

exact values before and after (consistent)

Particle Filtering: Observe
§  How handle noisy observations?

§  Suppose sensor gives red reading?

Particle Filtering: Observe
Slightly trickier:

§  We don’t sample the observation, we fix it
§  Instead: downweight samples based on the

evidence (form of likelihood weighting)

§  Note: as before, probabilities don’t sum to one,
since most have been downweighted
(in fact they sum to an approximation of P(e))

Particle Filtering: Resample
§  Rather than tracking

weighted samples, we
resample

§  N times, we choose from
our weighted sample
distribution (i.e. draw with
replacement)

§  This is equivalent to
renormalizing the
distribution

§  Now the update is
complete for this time
step, continue with the
next one

Old Particles:
 (3,3) w=0.1
 (2,1) w=0.9
 (2,1) w=0.9
 (3,1) w=0.4
 (3,2) w=0.3
 (2,2) w=0.4
 (1,1) w=0.4
 (3,1) w=0.4
 (2,1) w=0.9
 (3,2) w=0.3

New Particles:
 (2,1) w=1
 (2,1) w=1
 (2,1) w=1
 (3,2) w=1
 (2,2) w=1
 (2,1) w=1
 (1,1) w=1
 (3,1) w=1
 (2,1) w=1
 (1,1) w=1

15

Particle Filter (Recap)
Recap:#Par)cle#Filtering#

!  Par)cles:#track#samples#of#states#rather#than#an#explicit#distribu)on#

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Elapse Weight Resample

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

 Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

[demo:#ghostbusters#par)cle#filtering]#

Particle Filtering Summary
§  Represent current belief P(X | evidence to date)

as set of n samples (actual assignments X=x)
§  For each new observation e:

1. Sample transition, once for each current particle x

2. For each new sample x’, compute importance weights
for the new evidence e:

3. Finally, normalize by resampling the importance
weights to create N new particles

HMM Examples &
Applications

17

P4: Ghostbusters

§  Plot: Pacman's grandfather, Grandpac,
learned to hunt ghosts for sport.

§  He was blinded by his power, but could
hear the ghosts’ banging and clanging.

§  Transition Model: All ghosts move
randomly, but are sometimes biased

§  Emission Model: Pacman knows a
“noisy” distance to each ghost 0 200

15

13

11

9

7

5

3

1

Noisy distance prob
True distance = 8

Which Algorithm?
Exact filter, uniform initial beliefs

Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?
Particle filter, uniform initial beliefs, 300 particles

Robot Localization
§  In robot localization:

§  We know the map, but not the robot’s position
§  Observations may be vectors of range finder readings
§  State space and readings are typically continuous (works

basically like a very fine grid) and so we cannot store B(X)
§  Particle filtering is a main technique

Robot Localization

QuickTime™ and a
GIF decompressor

are needed to see this picture.

SLAM

§  SLAM = Simultaneous Localization And Mapping
§  We do not know the map or our location
§  Our belief state is over maps and positions!
§  Main techniques: Kalman filtering (Gaussian HMMs) and particle

methods

DP-SLAM, Ron Parr

Best Explanation Queries

§  Query: most likely seq:

X5 X2

E1

X1 X3 X4

E2 E3 E4 E5

State Path Trellis
§  State trellis: graph of states and transitions over time

§  Each arc represents some transition
§  Each arc has weight
§  Each path is a sequence of states
§  The product of weights on a path is the seq’s probability
§  Can think of the Forward (and now Viterbi) algorithms as

computing sums of all paths (best paths) in this graph

sun

rain

sun

rain

sun

rain

sun

rain

*Forward/Viterbi Algorithm

27

Forward#/#Viterbi#Algorithms#

sun

rain

sun

rain

sun

rain

sun

rain

Forward#Algorithm#(Sum)# Viterbi#Algorithm#(Max)#

Example

23

* Viterbi Algorithm
sun

rain

sun

rain

sun

rain

sun

rain

22

