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Outline 
 

§  Probabilistic sequence models (and inference) 
§  Probability and Uncertainty – Preview 
§  Markov Chains 
§  Hidden Markov Models 
§  Exact Inference 
§  Particle Filters 
§  Applications 
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Example 
§  A robot move in a discrete grid 

§  May fail to move in the desired direction with some probability 
§  Observation from noisy sensor at each time 

§  Is a function of robot position 
§  Goal: Find the robot position (probability that a robot is at 

a specific position) 
§  Cannot always compute this probability exactly  
è Approximation methods  

Here: Approximate a distribution by sampling  
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Hidden Markov Model 
§  State Space Model 

§ Hidden states: Modeled as a Markov Process  
P(x0), P(xk | xk-1) 
§ Observations: ek 

P(ek | xk) 

x0 

y0 

x1 

y1 

xn 

yn 

P(e0|x0) 

P(x1|x0) 

… 

Position of the robot 

Observed position from 
the sensor 



Exact Solution: 
 Forward Algorithm 

§  Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t ) 

§  We first compute P( X1 | e1 ): 
§  For each t from 2 to T, we have P( Xt-1 | e1:t-1 )  
§  Elapse time: compute P( Xt | e1:t-1 ) 

§  Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t ) 



Approximate Inference: 
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§  Sometimes |X| is too big for exact inference 
§  |X| may be too big to even store B(X) 
§  E.g. when X is continuous 
§  |X|2 may be too big to do updates 

 

§  Solution: approximate inference by sampling 
§  How robot localization works in practice 
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What is Sampling?  

§  Goal: Approximate the 
original distribution:  

§  Approximate with Gaussian 
distribution 

§  Draw samples from a 
distribution close enough to 
the original distribution 

§  Here: A general framework 
for a sampling method  
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Approximate Solution: 
Perfect Sampling 

)|( :0:0 nn yxp
Assume we can sample 
from the original distribution Particle 1 

Particle N 

1
:0 nx

N
nx :0

Time 1 Time n 

. 

. 

Number of samples that match 
with query N

yxP nn
1)|( :0:0 =

Converges to the exact value 
for large N 

Robot path till time n 



Approximate Inference:  
Particle Filtering 

§  Solution: approximate inference 
§  Track samples of X, not all values 
§  Samples are called particles 
§  Time per step is linear in the number of samples 
§  But: number needed may be large 
§  In memory: list of particles, not states 

§  How robot localization works in practice 
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Representation: Particles 
§  Our representation of P(X) is now 

a list of N particles (samples) 
§  Generally, N << |X| 
§  Storing map from X to counts 

would defeat the point 

§  P(x) approximated by number of 
particles with value x 
§  So, many x will have P(x) = 0!  
§  More particles, more accuracy 

§  For now, all particles have a 
weight of 1 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (2,1) 
    (3,3) 
    (3,3) 
    (2,1) 



Particle Filtering: Elapse Time 
§  Each particle is moved by sampling 

its next position from the transition 
model 

§  This is like prior sampling – samples’ 
frequencies reflect the transition probs 

§  Here, most samples move clockwise, but 
some move in another direction or stay in 
place 

§  This captures the passage of time 
§  If we have enough samples, close to the 

exact values before and after (consistent) 



Particle Filtering: Observe 
§  How handle noisy observations? 

§  Suppose sensor gives red reading? 



Particle Filtering: Observe 
Slightly trickier: 

§  We don’t sample the observation, we fix it 
§  Instead: downweight samples based on the 

evidence (form of likelihood weighting) 

§  Note: as before, probabilities don’t sum to one, 
since most have been downweighted               
(in fact they sum to an approximation of P(e)) 



Particle Filtering: Resample 
§  Rather than tracking 

weighted samples, we 
resample 

§  N times, we choose from 
our weighted sample 
distribution (i.e. draw with 
replacement) 

§  This is equivalent to 
renormalizing the 
distribution 

§  Now the update is 
complete for this time 
step, continue with the 
next one 

Old Particles: 
    (3,3) w=0.1 
    (2,1) w=0.9 
    (2,1) w=0.9   
    (3,1) w=0.4 
    (3,2) w=0.3 
    (2,2) w=0.4 
    (1,1) w=0.4 
    (3,1) w=0.4 
    (2,1) w=0.9 
    (3,2) w=0.3 

New Particles: 
    (2,1) w=1 
    (2,1) w=1 
    (2,1) w=1   
    (3,2) w=1 
    (2,2) w=1 
    (2,1) w=1 
    (1,1) w=1 
    (3,1) w=1 
    (2,1) w=1 
    (1,1) w=1 
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Particle Filter (Recap) 
Recap:#Par)cle#Filtering#

!  Par)cles:#track#samples#of#states#rather#than#an#explicit#distribu)on#

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Elapse Weight Resample 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 

     Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 

[demo:#ghostbusters#par)cle#filtering]#



Particle Filtering Summary 
§  Represent current belief P(X | evidence to date)             

as set of n samples (actual assignments X=x) 
§  For each new observation e: 

1. Sample transition, once for each current particle x 

2. For each new sample x’, compute importance weights 
for the new evidence e: 

3. Finally, normalize by resampling the importance 
weights to create N new particles  



HMM Examples & 
Applications 
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P4: Ghostbusters 

§  Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.   

§  He was blinded by his power, but could 
hear the ghosts’ banging and clanging. 

§  Transition Model: All ghosts move 
randomly, but are sometimes biased 

§  Emission Model: Pacman knows a 
“noisy” distance to each ghost 0 200
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Which Algorithm? 
Exact filter, uniform initial beliefs 



Which Algorithm? 
Particle filter, uniform initial beliefs, 25 particles 



Which Algorithm? 
Particle filter, uniform initial beliefs, 300 particles 



Robot Localization 
§  In robot localization: 

§  We know the map, but not the robot’s position 
§  Observations may be vectors of range finder readings 
§  State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X) 
§  Particle filtering is a main technique 



Robot Localization 

QuickTime™ and a
GIF decompressor

are needed to see this picture.



SLAM 

§  SLAM = Simultaneous Localization And Mapping 
§  We do not know the map or our location 
§  Our belief state is over maps and positions! 
§  Main techniques: Kalman filtering (Gaussian HMMs) and particle 

methods 

DP-SLAM, Ron Parr 



Best Explanation Queries 

§  Query: most likely seq: 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 



State Path Trellis 
§  State trellis: graph of states and transitions over time 

§  Each arc represents some transition 
§  Each arc has weight 
§  Each path is a sequence of states 
§  The product of weights on a path is the seq’s probability 
§  Can think of the Forward (and now Viterbi) algorithms as 

computing sums of all paths (best paths) in this graph 

sun 

rain 

sun 

rain 

sun 

rain 

sun 

rain 



*Forward/Viterbi Algorithm 
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Forward#/#Viterbi#Algorithms#

sun 

rain 

sun 

rain 

sun 

rain 

sun 

rain 

Forward#Algorithm#(Sum)# Viterbi#Algorithm#(Max)#



Example 
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* Viterbi Algorithm 
sun 

rain 

sun 

rain 

sun 

rain 

sun 

rain 
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