CSE 473: Artificial Intelligence Spring 2014 Uncertainty & Probabilistic Reasoning Hanna Hajishirzi Many slides adapted from Pieter Abbeel, Dan Klein, Dan Weld, Stuart Russell, Andrew Moore & Luke Zettlemoyer #### Announcements - Project 1 grades - Resubmission policy ### **Terminology** #### **Marginal Probability** $$p(X = x_i) = \frac{c_i}{N}.$$ ### Joint Probability $$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$ # Conditional Probability $$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$ X value is given ### **Conditional Probability** - A simple relation between joint and conditional probabilities - In fact, this is taken as the definition of a conditional probability $$P(a|b) = \frac{P(a,b)}{P(b)}$$ | Т | W | Р | |------|------|-----| | hot | sun | 0.4 | | hot | rain | 0.1 | | cold | sun | 0.2 | | cold | rain | 0.3 | $$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$ $$= P(W = s, T = c) + P(W = r, T = c)$$ $$= 0.2 + 0.3 = 0.5$$ #### Probabilistic Inference - Diagnosis - Speech recognition - Tracking objects - Robot mapping - Genetics - Error correcting codes - ... lots more! #### Probabilistic Inference - Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint) - We generally compute conditional probabilities - P(on time | no reported accidents) = 0.90 - These represent the agent's beliefs given the evidence - Probabilities change with new evidence: - P(on time | no accidents, 5 a.m.) = 0.95 - P(on time | no accidents, 5 a.m., raining) = 0.80 - Observing new evidence causes beliefs to be updated P(sun)? | S | Т | W | Р | |--------|------|------|------| | summer | hot | sun | 0.30 | | summer | hot | rain | 0.05 | | summer | cold | sun | 0.10 | | summer | cold | rain | 0.05 | | winter | hot | sun | 0.10 | | winter | hot | rain | 0.05 | | winter | cold | sun | 0.15 | | winter | cold | rain | 0.20 | P(sun | winter)? | S | Т | W | Р | |--------|------|------|------| | summer | hot | sun | 0.30 | | summer | hot | rain | 0.05 | | summer | cold | sun | 0.10 | | summer | cold | rain | 0.05 | | winter | hot | sun | 0.10 | | winter | hot | rain | 0.05 | | winter | cold | sun | 0.15 | | winter | cold | rain | 0.20 | P(sun | winter, hot)? | S | Т | W | Р | |--------|------|------|------| | summer | hot | sun | 0.30 | | summer | hot | rain | 0.05 | | summer | cold | sun | 0.10 | | summer | cold | rain | 0.05 | | winter | hot | sun | 0.10 | | winter | hot | rain | 0.05 | | winter | cold | sun | 0.15 | | winter | cold | rain | 0.20 | P(sun)? | S | Т | W | Р | |--------|------|------|------| | summer | hot | sun | 0.30 | | summer | hot | rain | 0.05 | | summer | cold | sun | 0.10 | | summer | cold | rain | 0.05 | | winter | hot | sun | 0.10 | | winter | hot | rain | 0.05 | | winter | cold | sun | 0.15 | | winter | cold | rain | 0.20 | P(sun | winter)? | S | Т | W | Р | |--------|------|------|------| | summer | hot | sun | 0.30 | | summer | hot | rain | 0.05 | | summer | cold | sun | 0.10 | | summer | cold | rain | 0.05 | | winter | hot | sun | 0.10 | | winter | hot | rain | 0.05 | | winter | cold | sun | 0.15 | | winter | cold | rain | 0.20 | ### Uncertainty - General situation: - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms) - Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present) - Model: Agent knows something about how the known variables relate to the unknown variables - Probabilistic reasoning gives us a framework for managing our beliefs and knowledge #### General case: - We want: $P(Q|e_1 \dots e_k)$ - First, select the entries consistent with the evidence - Second, sum out H to get joint of Query and evidence: $$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} \underbrace{P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$ Finally, normalize the remaining entries to conditionalize ### **Supremacy** of the Joint Distribution P(sun)? P(sun | winter)? P(sun | winter, hot)? | S | Т | W | Р | |--------|------|------|------| | summer | hot | sun | 0.30 | | summer | hot | rain | 0.05 | | summer | cold | sun | 0.10 | | summer | cold | rain | 0.05 | | winter | hot | sun | 0.10 | | winter | hot | rain | 0.05 | | winter | cold | sun | 0.15 | | winter | cold | rain | 0.20 | #### Problems with Enumeration #### Obvious problems: - Worst-case time complexity O(dⁿ) - Space complexity O(dⁿ) to store the joint distribution #### Solutions - Better techniques - Better representation - Simplifying assumptions ### The Product Rule Sometimes have conditional distributions but want the joint $$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \Leftrightarrow \qquad P(x,y) = P(x|y)P(y)$$ Example: P(W) sun | L | (D) | <i>V V</i> |) | | |---|-----|------------|---|--| | | | | | | | D | W | Р | |-----|------|-----| | wet | sun | 0.1 | | dry | sun | 0.9 | | wet | rain | 0.7 | | dry | rain | 0.3 | P(D,W) | D | W | Р | |-----|------|------| | wet | sun | 0.08 | | dry | sun | 0.72 | | wet | rain | 0.14 | | dry | rain | 0.06 | #### The Product Rule Sometimes have conditional distributions but want the joint $$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \Leftrightarrow \qquad P(x,y) = P(x|y)P(y)$$ Example: $$P(W) P(D|W)$$ $$W \longrightarrow D$$ #### The Chain Rule • More generally, can always write any joint distribution as an incremental product of conditional distributions? $$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$ $$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$ Why is this always true? ### Bayes' Rule Two ways to factor a joint distribution over two variables: $$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$ That's my rule! Dividing, we get: $$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$ - Lets us build a conditional from its reverse - Often one conditional is tricky but the other one is simple - Foundation of many systems we'll see later - In the running for most important AI equation! # Inference with Bayes' Rule Example: Diagnostic probability from causal probability: $$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$ - Example: - m is meningitis, s is stiff neck $$P(s|m)=0.8$$ $P(m)=0.0001$ Example $P(s)=0.1$ $$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$ - Note: posterior probability of meningitis still very small - Note: you should still get stiff necks checked out! Why? ### Quiz: Bayes Rule Given: P(W) | R | Р | |------|-----| | sun | 0.8 | | rain | 0.2 | P(D|W) | D | W | Р | |-----|------|-----| | wet | sun | 0.1 | | dry | sun | 0.9 | | wet | rain | 0.7 | | dry | rain | 0.3 | What is P(W | dry)? ### Ghostbusters, Revisited - Let's say we have two distributions: - Prior distribution over ghost location: P(G) - Let's say this is uniform - Sensor reading model: P(R | G) - Given: we know what our sensors do - R = reading color measured at (1,1) - E.g. P(R = yellow | G=(1,1)) = 0.1 $$P(g|r) \propto P(r|g)P(g)$$ ### Independence Two variables are independent if: $$\forall x, y : P(x, y) = P(x)P(y)$$ - This says that their joint distribution factors into a product two simpler distributions - Another form: $$\forall x, y : P(x|y) = P(x)$$ - We write: $X \perp\!\!\!\perp Y$ - Independence is a simplifying modeling assumption - Empirical joint distributions: at best "close" to independent - What could we assume for {Weather, Traffic, Cavity, Toothache}? # Example: Independence? | D_{-} | T | W | |------------|----------|----| | <i>•</i> 1 | $(\bot,$ | VV | | Т | W | Р | |------|------|-----| | hot | sun | 0.4 | | hot | rain | 0.1 | | cold | sun | 0.2 | | cold | rain | 0.3 | #### P(T) | Τ | Р | |------|-----| | hot | 0.5 | | cold | 0.5 | P(W) | W | Р | |------|-----| | sun | 0.6 | | rain | 0.4 | ### Example: Independence N fair, independent coin flips: $$2^n \left\{ \begin{array}{c} P(X_1, X_2, \dots X_n) \\ \end{array} \right.$$ ### Conditional Independence - P(Toothache, Cavity, Catch) - If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache: - P(+catch | +toothache, +cavity) = P(+catch | +cavity) - The same independence holds if I don't have a cavity: - P(+catch | +toothache, -cavity) = P(+catch | -cavity) - Catch is conditionally independent of Toothache given Cavity: - P(Catch | Toothache, Cavity) = P(Catch | Cavity) - Equivalent statements: - P(Toothache | Catch , Cavity) = P(Toothache | Cavity) - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) - One can be derived from the other easily ### Conditional Independence - Unconditional (absolute) independence very rare (why?) - Conditional independence is our most basic and robust form of knowledge about uncertain environments: $$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$ $$\forall x, y, z : P(x|z, y) = P(x|z)$$ $$X \perp \!\!\!\perp Y|Z$$ - What about this domain: - Traffic - Umbrella - Raining ### **Probability Summary** $$P(x|y) = \frac{P(x,y)}{P(y)}$$ Product rule $$P(x,y) = P(x|y)P(y)$$ Chain rule $$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$ = $$\prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$$ - **X,** Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$ - lacksquare X and Y are conditionally independent given Z if and only if: $X \!\perp\!\!\!\perp \!\!\!\perp \!\!\! Y | Z$ $$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$