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Announcements

* Project 1 grades
= Resubmission policy



Terminology

Marginal Probability
Yj Tij } J DX = 2,) = %
| Conditional
Joint Probability Probability

.
N p(YZyj!X:%):C—Zj

LX value is given

p(X = Z’i,Y = yj) =



Conditional Probability

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(alb) = P(a,b)
P(b)
P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)

P(W:S‘T:C):P(W:S,T:C) :E
P(T = c) 0.5

- —

=PW=s,T=c)4+P(W=r,T =c)
=0.24+0.3 =0.5
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Probabilistic Inference

Diagnosis
Speech recognition
Tracking objects

Robot mapping
Genetics

Error correcting codes
... lots more!



Probabilistic Inference

* Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities

= P(on time | no reported accidents) = 0.90
* These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated



Inference by Enumeration

= P(sun)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter, hot)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

0.11 0.11 0.11

' . 0.05 !
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Inference by Enumeration

= (General case:

= Evidence variables: E7...Ey=e€1...¢; X1, Xo, ... Xn
= Query* variable: Q |
= Hidden variables:  H;...H, All variables

= We want: P(Qle1...ex)
= First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:

P(Q.hy.. heeq...
P(Q7€1°"€k) — hlzh \(Q 1 \;81 6@
X1, Xo. ... Xn

= Finally, normalize the remaining entries to conditionalize



Supremacy of the Joint Distribution

= P(sun)?

= P(sun | winter)?

= P(sun | winter, hot)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Problems with Enumeration

= Obvious problems:
» Worst-case time complexity O(d")

= Space complexity O(d") to store the
joint distribution

= Solutions

= Better techniques
= Better representation
= Simplifying assumptions
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The Product Rule

= Sometimes have conditional distributions but want the joint

(> Plz,y) = P(=ly)P(y)

P(zl|y) =

= Example:

P(W)

W

=

sun

0.8

rain

0.2

P(x,y)
P(y)

P(D|W)

D W | P
wet | sun| 0.1
dry | sun| 0.9
wet | rain| 0.7
dry |rain| 0.3

P(D,W)

D W P
wet | sun | 0.08
dry | sun | 0.72
wet | rain | 0.14
dry | rain | 0.06




The Product Rule

= Sometimes have conditional distributions but want the joint

Paly) = L ]ga(?;)f) (= P(z,y) = P(aly)P(y)

= Example:

P(D,W)

P(W) P(D|W)

O (©)




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions?

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(x1,z2,...zn) = || P(ailay ... 2-1)
1

= Why is this always true?



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(x|y)P(y) = P(y|x)P(x) That's my rule!j

= Dividing, we get:
P(yl|z)
P(zly) =
V=

= Why is this at all helpful?
» |ets us build a conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems we’ll see later

P(x)

* |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(Effect|Cause) P(Cause)
P(Effect)

P(Cause|Effect) =

= Example:

= m is meningitis, s is stiff neck P(slm) = 0.8 Example
P(m) =0.0001 r givens

P(s) =0.1

__ P(sjm)P(m) _ 0.8 x 0.0001
— P(s) - 0.1

= Note: posterior probability of meningitis still very small

P(m|s) = 0.0008

» Note: you should still get stiff necks checked out! Why?



Quiz: Bayes Rule

= Glven:
P(W)
R P
sun 0.8
rain 0.2

= Whatis P(W | dry) ?

P(D|W)
D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain | 0.3
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Ghostbusters, Revisited

Let's say we have two distributions:
» Prior distribution over ghost location: P(G) | | |
= Let’s say this is uniform
» Sensor reading model: P(R | G)
= Given: we know what our sensors do
* R =reading color measured at (1,1)
= E.g. P(R=yellow | G=(1,1))=0.1
We can calculate the posterior
distribution P(G]|r) over ghost locations
given a reading using Bayes' rule: M
P(glr) o< P(r|g)P(g) .n.
<0.01 0.17




Independence

= Two variables are independent if:
Vz,y : P(z,y) = P(x)P(y)

» This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Vi, y: P(zly) = P(x)

= Wewrite: X || YV

* Independence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent
» What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P(T)
T P
hot 0.5
Py (T, W) cold 0.5
T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3 P(W)
W P
sun 0.6

rain 0.4




Example: Independence

= N fair, independent coin flips:

 P(X1,Xp,... Xp)

\




Conditional Independence

= P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
» P(+catch | +toothache, -cavity) = P(+catch| —cavity)

Catch is conditionally independent of Toothache given Cavity:

» P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
» P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
*= One can be derived from the other easily



Conditional Independence

» Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Va,y,z : P(z,ylz) = P(z]z)P(y|2)

XY\ Z
Vi, y,z o Px]z,y) = P(x|2) |

= \What about this domain:
= Traffic

= Umbrella
= Raining



Probability Summary

" s P(z,y)
P(z|ly) =
Conditional probability (z|y) P(y)
Product rule P(z,y) = P(z|y) P(y)
Chain rule P(X1,X2,.... Xn) = P(X1)P(X2|X1)P(X3/X1,X2)...
= [ P(Xi|X1..-.. X 1)
i=1

X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if: X1Y|Z
Vi,y,z : P(x,y|z) = P(z|z)P(y|z)
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