CSE 473: Artificial Intelligence

Reinforcement Learning

Hanna Hajishirzi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or
Andrew Moore

MDP and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, * Value / policy iteration
\ Evaluate a fixed policy Policy evaluation /
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, * VI/Pl on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy w PE on approx. MDP Evaluate a fixed policy m Value Learning

J

Passive Learning: TD Learning

VT (s) < > T(s,m(s),s)[R(s,m(s),s") +~V"(s")]

= Big idea: why bother learning T? S
= Update V each time we experience a transition ni(s)
= Temporal difference learning (TD) s, 7t(S)

= Policy still fixed!

= Move values toward value of whatever ,
successor occurs: running average! A s

sample = R(s,n(s),s) +~V7(s)
VT(s) «— (1 —a)V"(s) 4+ (a)sample
V7T (s) «— V™ (s) + a(sample — V" (s))

Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q*(s,a) =Y T(s,a,s") [R(s, a,s') 4+~ maz;\x Q* (s, a’)]

= | earn Q*(s,a) values
= Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
» Consider your new sample estimate:
sample = R(s,a,s’) +~ max Q(s',d)

a

» |[ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (a) [sample]

Exploration/Exploitation

= When to explore
= Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet) established

= Exploration function

= Takes a value estimate and a count, and returns an
optimistic utility, e.g. f(u,n) = u + k/n (exact form not
important)

= Exploration policy mt(s’)=

maxQi(s,a) vs. maxf(Q;(s,a"), N(s',a))

a

Q-Learning Properties

» Amazing result: Q-learning converges to optimal policy
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
= Not too sensitive to how you select actions (!)

= Neat property: off-policy learning

» |earn optimal policy without following it (some caveats)

M

S iE S

Q-Learning Final Solution

= Q-learning produces tables of g-values:

Q-Learning

* |In realistic situations, we cannot possibly learn
about every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

* |nstead, we want to generalize:

» |earn about some small number of training states
from experience

= Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again

Example: Pacman

= Let's say we discover
through experience
that this state is bad:

* |In naive q learning,
we know nothing
about related states
and their g values:

= Or even this third one!

Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)

» Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state

= Example features:

= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

...... etc.
Is it the exact state on this slide?

= Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)

Which Algorithm?

Q-learning, no features, 50 learning trials:

11

Which Algorithm?

Q-learning, no features, 1000 learning trials:

Linear Feature Functions

» Using a feature representation, we can write a

g function (or value function) for any state
using a few weights:

V(s) =wif1(s) +wafa(s) + ... 4+ wnfn(s)

Q(s,a) = wi f1(s,a)twafa(s,a)+...+wnfn(s,a)

= Advantage: our experience is summed up in
a few powerful numbers

= Disadvantage: states may share features but
actually be very different in value!

Function Approximation

Q(s,a) = wi f1(s,a)twafa(s,a)+...+wnfn(s,a)

» Q-learning with linear g-functions:

transition = (s,a,r,s’)

difference = |r 4+~ max Q(s',a)| — Q(s,a)

a

Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; — w; + « [difference] f;(s,a) Approximate Qs

= [ntuitive interpretation:
= Adjust weights of active features
= E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares

Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fasr(s,a)
fpor(s,NORTH) = 0.5
fasr(s, NORTH) = 1.0

Iy — — 41
Q(s,) =0 Q(s,a) =+ e ORTH
R(s,a,s") = =500 - 500

correction = —501
wpor <— 4.0 o [—501] 0.5
wasT <— — 1.0+« [—501] 1.0

Q(87 CL) — 3°OfDOT(S7 CL) - 3°OfGST(Sv CL)

Linear Regression

20

f1(x)

Prediction Prediction

Yy = wo + wy f1(x) y; = wo + w1 f1(z) + wafo(x)

Ordinary Least Squares (OLS)

2
total error = Z (y; — y}-)2 = > (yz — Zwkfk(xi))
i k

()

. Error or “residual’
Observation y

Prediction 37

Minimizing Error

Imagine we had only one point x with features f(x):

2
error(w) = <y - zwkfm))
k
o egror(w) = — (y — Zwkfk(ai)) fm(x)
Wi k

W «— Wm + O (y — Zwkfk(w)) fm(x)
k

Approximate q update:

“target” “prediction”

win — wn + & [r + 7 maxQ(s', ') — Q(s,)] fin(s, a)

Overfitting

30—
25—
. Degree 15 polynomial
15—
IR /N
*
°
\ —_°
0 \
* 0/ ° °
4 \\\\ /\L/H]
_
_10\
1% 2 p 6 8 10 12 19 1 b

Which Algorithm?

Q-learning, no features, 50 learning trials:

20

Which Algorithm?

Q-learning, no features, 1000 learning trials:

Which Algorithm?

Q-learning, simple features, 50 learning trials:

Search*

Policy Search”

= Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions

= We'll see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

= This is the idea behind policy search, such as what
controlled the upside-down helicopter

Policy Search”

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

* Problems:
= How do we tell the policy got better?
* Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

Policy Search”

= Advanced policy search:
» Write a stochastic (soft) policy:

Tw(s) o 02_i Wifi(s,a)

= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

= Take uphill steps, recalculate derivatives, etc.

