CSE 473: Artificial Intelligence

Reinforcement Learning

Hanna Hajishirzi

Many slides over the course adapted from either Luke Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore

MDP and RL

Known MDP: Offline Solution

Compute V*, Q*, π^*

Evaluate a fixed policy π

Technique

Value / policy iteration

Policy evaluation

Unknown MDP: Model-Based

Goal	Technique
Compute V*, Q*, π^*	VI/PI on approx. MDP
Evaluate a fixed policy π	PE on approx. MDP

Unknown MDP: Model-Free

Goal

Compute V*, Q*, π^*

Evaluate a fixed policy π

Technique

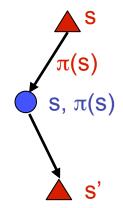
Q-learning

Value Learning

Passive Learning: TD Learning

$$V^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Big idea: why bother learning T?
 - Update V each time we experience a transition
- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!



$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$
$$V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha) sample$$
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (sample - V^{\pi}(s))$$

Q-Learning Update

- Q-Learning: sample-based Q-value iteration $Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$
- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

Exploration/Exploitation

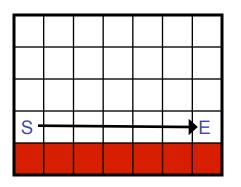
When to explore

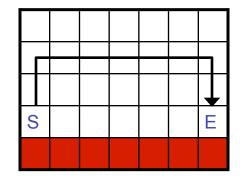
- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u, n) = u + k/n (exact form not important)
 - Exploration policy π(s')=

$$\max_{a'} Q_i(s', a') \quad \text{vs.} \quad \max_{a'} f(Q_i(s', a'), N(s', a'))$$

Q-Learning Properties

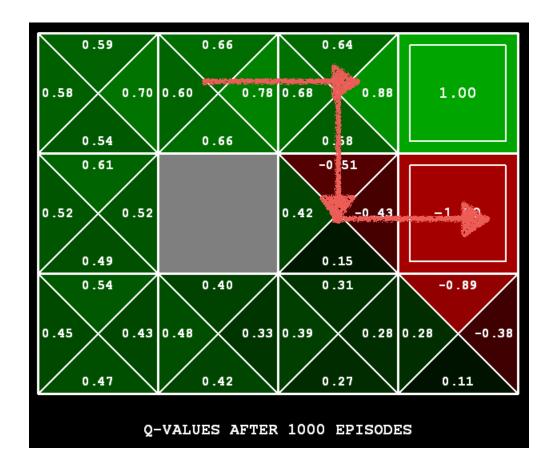
- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Not too sensitive to how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)





Q-Learning Final Solution

Q-learning produces tables of q-values:

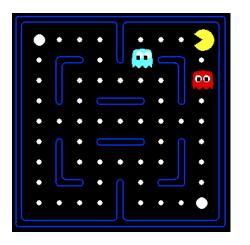


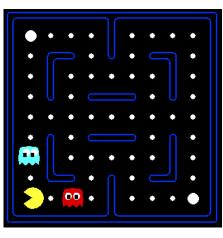
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

- Let's say we discover through experience that this state is bad:
- In naïve q learning, we know nothing about related states and their q values:



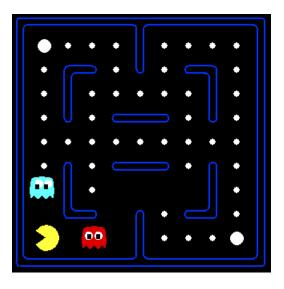




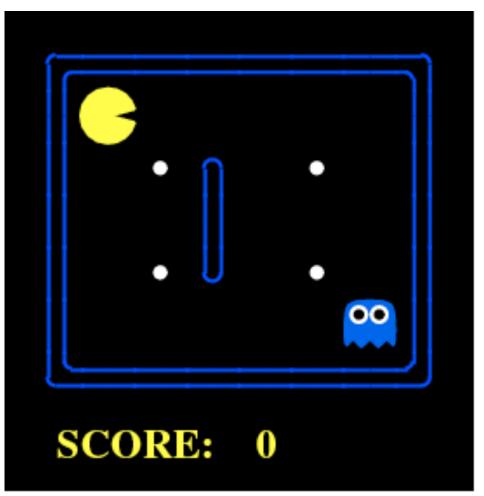
Or even this third one!

Feature-Based Representations

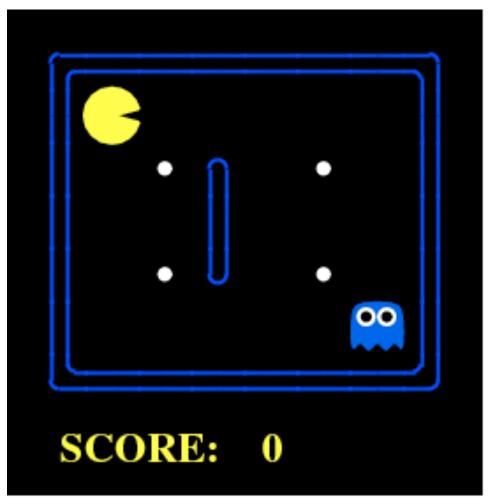
- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Q-learning, no features, 50 learning trials:



Q-learning, no features, 1000 learning trials:



Linear Feature Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Function Approximation

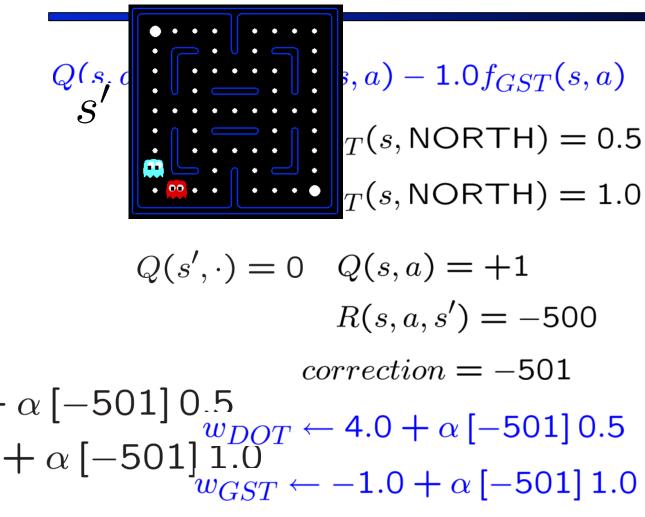
$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

 $\begin{aligned} transition &= (s, a, r, s') \\ \text{difference} &= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ Q(s, a) &\leftarrow Q(s, a) + \alpha \text{ [difference]} & \text{Exact Q's} \\ w_i &\leftarrow w_i + \alpha \text{ [difference] } f_i(s, a) & \text{Approximate Q's} \end{aligned}$

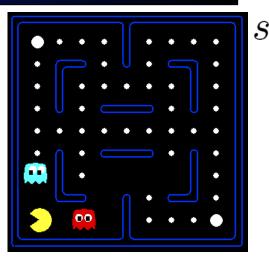
- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

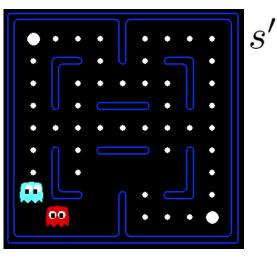


 $T_T(s,a)$

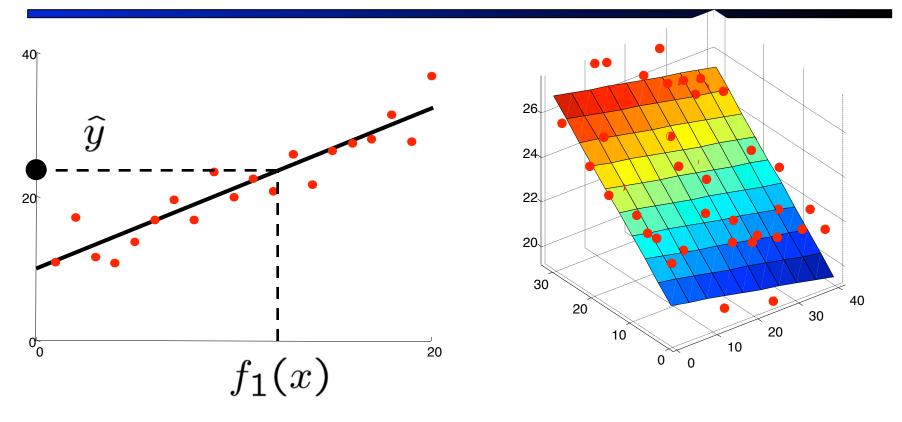
 $ST(Q(s,a) = 3.0f_{DOT}(s,a) - 3.0f_{GST}(s,a))$



a = NORTHr = -500



Linear Regression



Prediction $\hat{y} = w_0 + w_1 f_1(x)$ Prediction $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

Ordinary Least Squares (OLS)

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Observation y
Prediction \hat{y}
 \int_{0}^{0}

Minimizing Error

Imagine we had only one point x with features f(x):

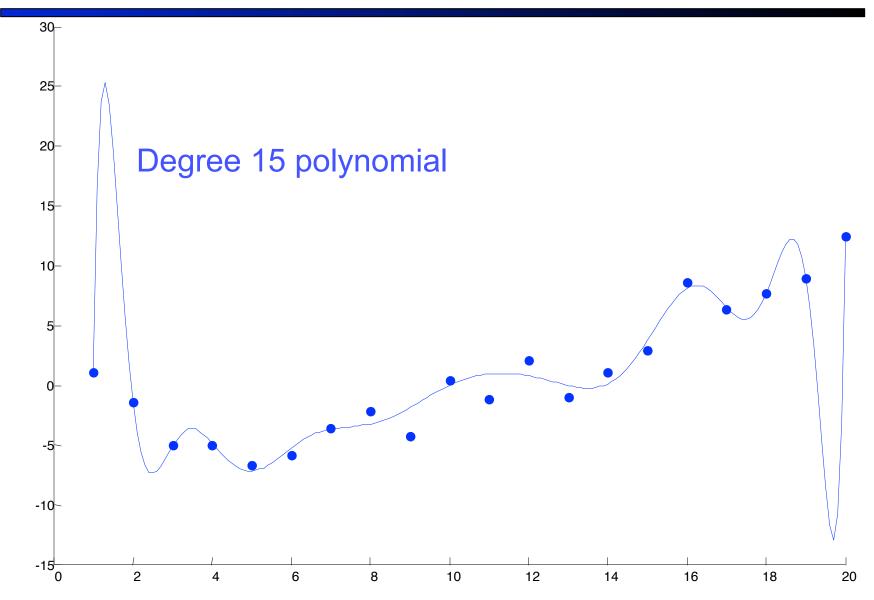
$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update:

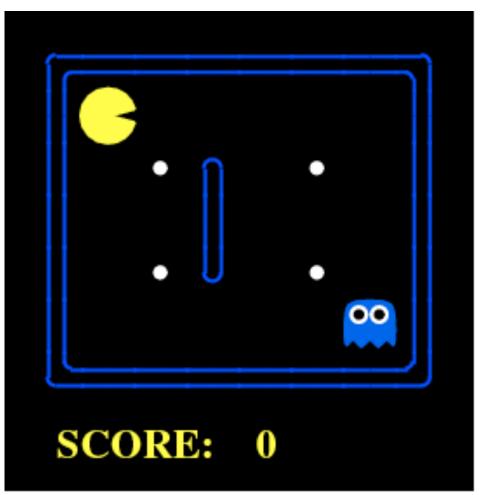
"target" "prediction"

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

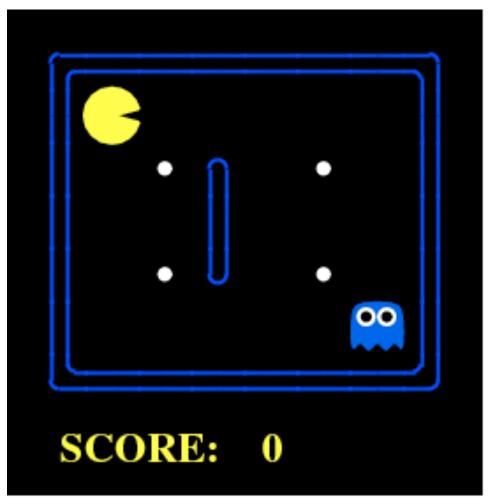
Overfitting



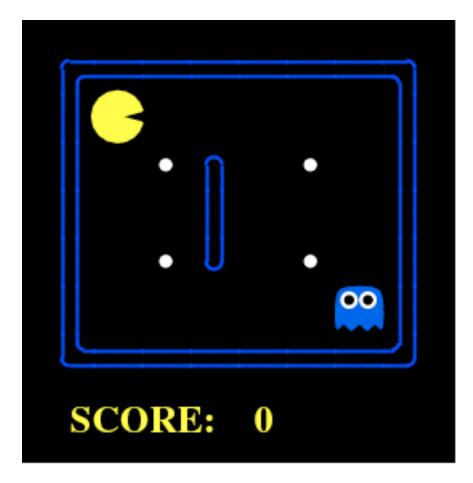
Q-learning, no features, 50 learning trials:



Q-learning, no features, 1000 learning trials:



Q-learning, simple features, 50 learning trials:



- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Simplest policy search:

- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

- Advanced policy search:
 - Write a stochastic (soft) policy:

 $\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}$

- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, optional material)
- Take uphill steps, recalculate derivatives, etc.