
CSE 473: Artificial Intelligence 

Reinforcement Learning
!

Hanna Hajishirzi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or

Andrew Moore
1

MDP and RL

2

The#Story#So#Far:#MDPs#and#RL#

Known#MDP:#Offline#Solu)on#

Goal # # # #Technique#
#
Compute#V*,#Q*,#π* # #Value#/#policy#itera)on#
#
Evaluate#a#fixed#policy#π # #Policy#evalua)on#
#
#

Unknown#MDP:#Model[Based# Unknown#MDP:#Model[Free#

Goal # # #Technique#
#
Compute#V*,#Q*,#π* #VI/PI#on#approx.#MDP#
#
Evaluate#a#fixed#policy#π #PE#on#approx.#MDP#
#
#

Goal # # #Technique#
#
Compute#V*,#Q*,#π* #Q[learning#
#
Evaluate#a#fixed#policy#π #Value#Learning#
#
#

Passive Learning: TD Learning

§ Big idea: why bother learning T?
§ Update V each time we experience a transition

§ Temporal difference learning (TD)
§ Policy still fixed!
§ Move values toward value of whatever

successor occurs: running average!

π(s)

s

s, π(s)

s’

Q-Learning Update
§ Q-Learning: sample-based Q-value iteration

§ Learn Q*(s,a) values
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate:
§ Consider your new sample estimate:

§ Incorporate the new estimate into a running average:

Exploration/Exploitation

§ Exploration function
§ Takes a value estimate and a count, and returns an

optimistic utility, e.g. (exact form not
important)

§ Exploration policy π(s’)=

§ When to explore
§ Random actions: explore a fixed amount
§ Better idea: explore areas whose badness is not (yet) established

vs.

Q-Learning Properties
§ Amazing result: Q-learning converges to optimal policy

§ If you explore enough
§ If you make the learning rate small enough
§ … but not decrease it too quickly!
§ Not too sensitive to how you select actions (!)

!
§ Neat property: off-policy learning

§ learn optimal policy without following it (some caveats)

S E S E

Q-Learning Final Solution

§ Q-learning produces tables of q-values:

Q-Learning

§ In realistic situations, we cannot possibly learn
about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory
!

§ Instead, we want to generalize:
§ Learn about some small number of training states

from experience
§ Generalize that experience to new, similar states
§ This is a fundamental idea in machine learning, and

we’ll see it over and over again

Example: Pacman

§ Let’s say we discover
through experience
that this state is bad:

§ In naïve q learning,
we know nothing
about related states
and their q values:

§ Or even this third one!

Feature-Based Representations

§ Solution: describe a state using
a vector of features (properties)
§ Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

§ Example features:
§ Distance to closest ghost
§ Distance to closest dot
§ Number of ghosts
§ 1 / (dist to dot)2

§ Is Pacman in a tunnel? (0/1)
§ …… etc.
§ Is it the exact state on this slide?

§ Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

11

Which Algorithm?
Q-learning, no features, 50 learning trials:

Which Algorithm?
Q-learning, no features, 1000 learning trials:

Linear Feature Functions
§ Using a feature representation, we can write a

q function (or value function) for any state
using a few weights:

!
§ Disadvantage: states may share features but

actually be very different in value!

§ Advantage: our experience is summed up in
a few powerful numbers

Function Approximation

§ Q-learning with linear q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

§ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Example:#Q[Pacman#

[demo#–#RL#pacman]#

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Regression

Prediction Prediction

Ordinary Least Squares (OLS)

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update:

Imagine we had only one point x with features f(x):

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

20

Which Algorithm?
Q-learning, no features, 50 learning trials:

Which Algorithm?
Q-learning, no features, 1000 learning trials:

Which Algorithm?
Q-learning, simple features, 50 learning trials:

Policy Search*

Policy Search*

§ Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible

estimates of future rewards, but they still produced good
decisions

§ We’ll see this distinction between modeling and prediction again
later in the course

!
§ Solution: learn the policy that maximizes rewards rather

than the value that predicts rewards
!

§ This is the idea behind policy search, such as what
controlled the upside-down helicopter

Policy Search*

§ Simplest policy search:
§ Start with an initial linear value function or q-function
§ Nudge each feature weight up and down and see if

your policy is better than before
!

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

Policy Search*

§ Advanced policy search:
§ Write a stochastic (soft) policy:
!
!
!

§ Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)
!

§ Take uphill steps, recalculate derivatives, etc.

