
CSE 473: Artificial Intelligence 

Reinforcement Learning
!

Hanna Hajishirzi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or

Andrew Moore
1

Outline
§ Reinforcement Learning

§ Passive Learning
§ TD Updates
§ Q-value iteration
§ Q-learning
§ Linear function approximation

What is it doing?

Reinforcement Learning

§ Reinforcement learning:
§ Still have an MDP:

§ A set of states s ∈ S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy π(s)

§ New twist: don’t know T or R
§ I.e. don’t know which states are good or what the actions do
§ Must actually try actions and states out to learn

Example: Animal Learning

§ RL studied experimentally for more than 60
years in psychology
!
!
!

§ Example: foraging

§ Rewards: food, pain, hunger, drugs, etc.
§ Mechanisms and sophistication debated

§ Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

§ Bees have a direct neural connection from nectar
intake measurement to motor planning area

Example: Backgammon

§ Reward only for win / loss in
terminal states, zero
otherwise

§ TD-Gammon learns a function
approximation to V(s) using a
neural network

§ Combined with depth 3
search, one of the top 3
players in the world

§ You could imagine training
Pacman this way…

§ … but it’s tricky! (It’s also P3)

Reinforcement Learning

§ Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must learn to act so as to maximize expected rewards

What is the dot doing?

Key Ideas for Learning

§ Online vs. Batch
§ Learn while exploring the world, or learn from

fixed batch of data
§ Active vs. Passive

§ Does the learner actively choose actions to
gather experience? or, is a fixed policy
provided?

§ Model based vs. Model free
§ Do we estimate T(s,a,s’) and R(s,a,s’), or just

learn values/policy directly

Passive Learning

§ Simplified task
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You are given a policy π(s)
§ Goal: learn the state values (and maybe the model)
§ I.e., policy evaluation
!

§ In this case:
§ Learner “along for the ride”
§ No choice about what actions to take
§ Just execute the policy and learn from experience
§ We’ll get to the active case soon
§ This is NOT offline planning!

Detour: Sampling Expectations
§ Want to compute an expectation weighted by P(x):

§ Model-based: estimate P(x) from samples, compute expectation

§ Model-free: estimate expectation directly from samples

§ Why does this work? Because samples appear with the right
frequencies!

Model-Based Learning

§ Idea:
§ Learn the model empirically (rather than values)
§ Solve the MDP as if the learned model were correct

§ Empirical model learning
§ Simplest case:

§ Count outcomes for each s,a
§ Normalize to give estimate of T(s,a,s’)
§ Discover R(s,a,s’) the first time we experience (s,a,s’)

§ More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.g.
“stationary noise”)

Example: Model-Based Learning

§ Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

Model-free Learning

§ Big idea: why bother learning T?
§ Question: how can we compute V if we don’t

know T?
§ Use direct estimation to sample complete

trials, average rewards at end
§ Use sampling to approximate the

Bellman updates, compute new values
during each learning step

π(s)

s

s, π(s)

s’

Simple Case: Direct Estimation
§ Average the total reward for

every trial that visits a state:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
V(1,1) ~ (92 + -106) / 2 = -7

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100

Problems with Direct Evaluation

§ What’s good about direct evaluation?
§ It is easy to understand
§ It doesn’t require any knowledge of T and R
§ It eventually computes the correct average

value using just sample transitions
§ What’s bad about direct evaluation?

§ It wastes information about state connections
§ Each state must be learned separately
§ So, it takes long time to learn

16

Towards Better Model-free Learning

§ Simplified Bellman updates to
calculate V for a fixed policy:
§ New V is expected one-step-look-

ahead using current V
§ Unfortunately, need T and R

π(s)

s

s, π(s)

s, π(s),s’

s’

Review: Model-Based Policy Evaluation

Sample Avg to Replace Expectation?

§ Who needs T and R? Approximate the
expectation with samples (drawn from T!) π(s)

s

s, π(s)

s1’s2’ s3’

Temporal Difference Learning

§ Big idea: why bother learning T?
§ Update V each time we experience a transition

§ Temporal difference learning (TD)
§ Policy still fixed!
§ Move values toward value of whatever

successor occurs: running average!

π(s)

s

s, π(s)

s’

Detour: Exp. Moving Average

§ Exponential moving average
§ Makes recent samples more important
!
!
!
!

§ Forgets about the past (distant past values were wrong anyway)
§ Easy to compute from the running average

§ Decreasing learning rate can give converging averages

 TD Policy Evaluation

Take γ = 1, α = 0.5, V0(<4,3>)=100, V0(<4,2>)=-100, V0 = 0 otherwise

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

+100

-100

Updates for V(<3,3>):

 V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5

 V(<3,3>) = 0.5*-0.5 + 0.5*[-1+1*100] = 49.475

 V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]

x

y

Problems with TD Value Learning

§ However, if we want to turn our value
estimates into a policy, we’re sunk:

a

s

s, a

s,a,s’
s’

§ TD value leaning is model-free for
policy evaluation (passive
learning)

§ Idea: learn Q-values directly
§ Makes action selection model-free too!

