CSE 473: Artificial Intelligence

Reinforcement Learning

Hanna Hajishirzi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or
Andrew Moore

Outline

= Reinforcement Learning
= Passive Learning
= TD Updates
= Q-value iteration
= Q-learning
= Linear function approximation

What is it doing?

/;/ Step Delay: 0.10000 €+3 €-) Epsilon: 0.500 €+
(T/\: Discount: 0.800 £+ = Learning Rate: 0.800 €+3

Reinforcement Learning

= Reinforcement learning:
= Still have an MDP:

= Asetof statess €S
= A set of actions (per state) A Q /

= Amodel T(s,a,s’)
= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Example: Animal Learning

» RL studied experimentally for more than 60
years in psychology

» Rewards: food, pain, hunger, drugs, etc.
» Mechanisms and sophistication debated

= Example: foraging
= Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

= Bees have a direct neural connection from nectar
iIntake measurement to motor planning area

Example: Backgammon

Reward only for win / loss in
terminal states, zero
otherwise

TD-Gammon learns a function
approximation to V(s) using a
neural network

Combined with depth 3

search, one of the top 3
players in the world

You could imagine training
Pacman this way...

... butit’s tricky! (It's also P3)

0 1 2 3 4 5 6 7 8 9 1011 12
[|

TN N N,
(449«
' J)

25 24 23 22 21 20 19 18 17 16 15 14 13

Reinforcement Learning

» Basic idea:
» Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must learn to act so as to maximize expected rewards

___[Agent

reward action
.
! a,

state

r

I

e
: St41 nvironment

Key ldeas for Learning

= Online vs. Batch

= Learn while exploring the world, or learn from
fixed batch of data

= Active vs. Passive

* Does the learner actively choose actions to
gather experience? or, is a fixed policy
provided?

= Model based vs. Model free

» Do we estimate T(s,a,s’) and R(s,a,s’), or just
learn values/policy directly

Passive Learning

= Simplified task

* You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’) 1
You are given a policy mn(s)
Goal: learn the state values (and maybe the model)
|.e., policy evaluation

= |n this case:
= |earner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon
= This is NOT offline planning!

!

B

Detour: Sampling Expectations

= Want to compute an expectation weighted by P(x):
Elf(z)] =2, P(z)f(z)
= Model-based: estimate P(x) from samples, compute expectation

P(x) = count (z) /& m

= Model-free: estimate expectation directly from samples

z; ~ P(x) Elf(x)] ~ 5 22, f(@i)

= Why does this work”? Because samples appear with the right
frequencies!

Model-Based Learning

* |dea:
» | earn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct

= Empirical model learning

= Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know

that all squares have related action outcomes, e.qg.
“stationary noise”)

Example: Model-Based Learning

y

= Episodes: 3|l = == | — +1oo\
1,1) up -1 1,1) up -1
(1,1) up (1,1) up , f f —
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 1 f e |
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 2 3 4
(3,3) right -1 (3,2) up -1 y =1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>)=1/3

(4,3) exit +100
(done)

T(<2,3>, right, <3,3>)=2/2

Model-free Learning

VT(s) > T(s,m(s),s)[R(s,m(s),s") + V" (s")]

= Big idea: why bother learning T? (S)
S
= Question: how can we compute V if we don’t '
(s)
know T?
» Use direct estimation to sample complete 1.

trials, average rewards at end

» Use sampling to approximate the
Bellman updates, compute new values
during each learning step

Simple Case: Direct Estimation

y
= Average the total reward for \ j
. . — | = | — [|+100
every trial that visits a state:
(1,1) up -1 (1,1) up - 2 4 t || -100
(1,2) up -1 (1,2) up
(1,2) up -1 (1,3) right -1 | == |-
(1,3) right -1 (2,3) right -1 1 2 3 4
(2,3) right -1 (3,3) right -1
: vy=1, R=-1
(3,3) right -1 (3,2) up -1
3,2) up -1 -
(3.2) up (4.2)exit-100 ;4 1y~ (92 +-106) /2 = -7
(3,3) right -1 (done)
(4,3) exit +100 V(3,3) ~ (99 + 97 +-102) / 3 =31.3

(done)

Problems with Direct Evaluation

= What's good about direct evaluation?
= |t is easy to understand
» |t doesn’t require any knowledge of T and R

= |t eventually computes the correct average
value using just sample transitions

= What's bad about direct evaluation?
* |t wastes information about state connections
» Each state must be learned separately
» S0, it takes long time to learn

16

Towards Better Model-free Learning

Review: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look- s, (s),s’
ahead using current V

= Unfortunately, need T and R

Voﬂ-(8> =0

Vi1(s) — Y T(s,m(s), s)[R(s, m(s),s) + Vi (s)]

Sample Avg to Replace Expectation?

Vi1(s) — Y T(s,m(s),) R(s,m(s), 8") + Vi (s)]

= Who needs T and R? Approximate the AS
expectation with samples (drawn from T!) 4(s)
sampler = R(s,mw(s),s7) + vV (s7) s, 7(s)
samplesr = R(s,m(s),s5) + V" (s5)
2) 2 A s, A s’ A s,

sampley, = R(s,m(s), s}) + Vi (s},)

1
in1(8) «— - > sample;
)

Temporal Difference Learning

VT (s) < > T(s,m(s),s)[R(s,m(s),s") +~V"(s")]

= Big idea: why bother learning T? S
= Update V each time we experience a transition ni(s)
= Temporal difference learning (TD) s, 7t(S)

= Policy still fixed!

= Move values toward value of whatever ,
successor occurs: running average! A s

sample = R(s,n(s),s) +~V7(s)
VT(s) «— (1 —a)V"(s) 4+ (a)sample
V7T (s) «— V™ (s) + a(sample — V" (s))

Detour: Exp. Moving Average

= Exponential moving average
= Makes recent samples more important
Tp+(1—a) Tp1+(1—a)? zpo+...
1+ (1-a)+(1—-a)?+...

CI_D'n —

= Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

Tp = (1 _O‘f) *Tp—1 T+ Q- Ty,

= Decreasing learning rate can give converging averages

1D Policy Evaluation

Vi(s) — (1 —-—a)V™(s) + « [R(s, w(s),s) + nyw(sl)}

(1,1) up -1 (1,1) up -1 3 — —- == | 1+100
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 2 |} b || -100
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 1 -— | — | -
(3,3) right -1 (3,2) up -1
(3.2) up -1 (4,2) exit 100 X

y U = H -

P Updates for V(<3,3>):

3,3) right -1 d
(3,3) rig (done) V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5
4,3) exit +100
(4,3) ex V(<3,3>) = 0.5%0.5 + 0.5*[-1+1*100] = 49.475
(done)

V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]
Take y =1, a = 0.5, Vo(<4,3>)=100, Vo(<4,2>)=-100, Vo = 0 otherwise

Problems with TD Value Learning

= TD value leaning is model-free for
policy evaluation (passive
learning)

= However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)
Q*(s,a) = > T(s,a,8) |R(s,a,s") +yV*(s)]

» |dea: learn Q-values directly
= Makes action selection model-free too!

