What action next?

Environment

Static vs. Dynamic

Fully vs. Partially Observable

Perfect vs. Noisy

Deterministic vs. Stochastic

Instantaneous vs. Durative

Percepts

Actions
Algorithms

- Blind search
- Heuristic search
- Mini-max & Expectimax
- MDPs
- Reinforcement learning
- State estimation
- Variable Elimination

Knowledge Representation

- Problem spaces
- Constraint networks
- HMMs
- Bayesian networks
- First-order logic
- Markov logic networks
- ...

What action next?
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>←b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>←e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|-----|-----|------|
| +a | +j | 0.9 |
| +a | ←j | 0.1 |
| ←a | +j | 0.05 |
| ←a | ←j | 0.95 |

| A | M | P(M|A) |
|-----|-----|------|
| +a | +m | 0.7 |
| +a | ←m | 0.3 |
| ←a | +m | 0.01 |
| ←a | ←m | 0.99 |

Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
 - This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain independence assumptions
 - Compare to the exact decomposition according to the chain rule!
P(B | J=true, M=true)

Earthquake

Burglary

Alarm

JohnCalls

MaryCalls

P(blj,m) = α \sum_{e,a} P(b,j,m,e,a)

Variable Elimination

P(blj,m) = αP(b) \sum_{e}P(e) \sum_{a}P(alb,e)P(jla)P(m,a)

Repeated computations \rightarrow Dynamic Programming
Learning

What is Machine Learning?
Machine Learning

Study of algorithms that
- improve their performance
- at some task
- with experience

Exponential Growth in Data
Supremacy of Machine Learning

- Machine learning is preferred approach to
 - Speech recognition, Natural language processing
 - Web search – result ranking
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - Computational biology
 - Sensor networks
 - ...

- This trend is accelerating
 - Improved machine learning algorithms
 - Improved data capture, networking, faster computers
 - Software too complex to write by hand
 - New sensors / IO devices
 - Demand for self-customization to user, environment

Space of ML Problems

<table>
<thead>
<tr>
<th>What is Being Learned?</th>
<th>Labeled Examples</th>
<th>Reward</th>
<th>Nothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Function</td>
<td>Classification</td>
<td></td>
<td>Clustering</td>
</tr>
<tr>
<td>Continuous Function</td>
<td>Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>Apprenticeship Learning</td>
<td>Reinforcement Learning</td>
<td></td>
</tr>
</tbody>
</table>
The Origin of Bayes Nets

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Burglary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>Alarm</td>
</tr>
<tr>
<td>Nbr1Calls</td>
<td>Nbr2Calls</td>
</tr>
</tbody>
</table>

Pr(B=t) Pr(B=f)
0.05 0.95

Pr(A|E,B)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e,b</td>
<td>0.9 (0.1)</td>
</tr>
<tr>
<td>e,b</td>
<td>0.2 (0.8)</td>
</tr>
<tr>
<td>e,b</td>
<td>0.85 (0.15)</td>
</tr>
<tr>
<td>e,b</td>
<td>0.01 (0.99)</td>
</tr>
</tbody>
</table>

Learning Topics

- Learning Parameters for a Bayesian Network
 - Fully observable
 - Maximum Likelihood (ML)
 - Maximum A Posteriori (MAP)
 - Bayesian
 - Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks
Parameter Estimation and Bayesian Networks

We have:
- Bayes Net structure and observations
- We need: Bayes Net parameters

<table>
<thead>
<tr>
<th>E</th>
<th>B</th>
<th>R</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P(B) = ?

P(¬B) = 1 - P(B) = 0.6
Parameter Estimation and Bayesian Networks

\[
P(A|E,B) = ?
\]
\[
P(A|E,\neg B) = ?
\]
\[
P(A|\neg E,B) = ?
\]
\[
P(A|\neg E,\neg B) = 0.5
\]
Parameter Estimation and Bayesian Networks

Coin

Coin Flip

\[P(H|C_1) = 0.1 \]
\[P(H|C_2) = 0.5 \]
\[P(H|C_3) = 0.9 \]

Which coin will I use?

\[P(C_1) = \frac{1}{3} \]
\[P(C_2) = \frac{1}{3} \]
\[P(C_3) = \frac{1}{3} \]

Prior: Probability of a hypothesis before we make any observations
Coin Flip

\[P(H|C_1) = 0.1 \quad P(H|C_2) = 0.5 \quad P(H|C_3) = 0.9 \]

Which coin will I use?

\[P(C_1) = 1/3 \quad P(C_2) = 1/3 \quad P(C_3) = 1/3 \]

Uniform Prior: All hypotheses are equally likely before we make any observations.

Experiment 1: Heads

Which coin did I use?

\[P(C_1|H) = ? \quad P(C_2|H) = ? \quad P(C_3|H) = ? \]

\[P(C_1|H) = \frac{P(H|C_1)P(C_1)}{P(H)} \]

\[P(H) = \sum_{i=1}^{3} P(H|C_i)P(C_i) \]
Experiment 1: Heads

Which coin did I use?

\[P(C_1|H) = 0.066 \quad P(C_2|H) = 0.333 \quad P(C_3|H) = 0.6 \]

Posterior: Probability of a hypothesis given data

<table>
<thead>
<tr>
<th>Coin</th>
<th>Prior Probability</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>1/3</td>
<td>0.1</td>
</tr>
<tr>
<td>(C_2)</td>
<td>1/3</td>
<td>0.5</td>
</tr>
<tr>
<td>(C_3)</td>
<td>1/3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Using Prior Knowledge

- **Should we always use a *Uniform Prior*?**
- **Background knowledge:**
 Heads => we have to buy Dan chocolate
 Dan *likes* chocolate…
 => Dan is more likely to use a coin biased in his favor

<table>
<thead>
<tr>
<th>Coin</th>
<th>Prior Probability</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>1/3</td>
<td>0.1</td>
</tr>
<tr>
<td>(C_2)</td>
<td>1/3</td>
<td>0.5</td>
</tr>
<tr>
<td>(C_3)</td>
<td>1/3</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Using Prior Knowledge

We can encode it in the prior:

\[
P(C_1) = 0.05 \quad P(C_2) = 0.25 \quad P(C_3) = 0.70
\]

\begin{align*}
P(H|C_1) & = 0.1 \quad P(H|C_2) = 0.5 \quad P(H|C_3) = 0.9
\end{align*}

Experiment 1: Heads

Which coin **did** I use?

\[
P(C_1|H) = ? \quad P(C_2|H) = ? \quad P(C_3|H) = ?
\]

\[
P(C_1|H) = \alpha P(H|C_1)P(C_1)
\]

\begin{align*}
P(H|C_1) & = 0.1 \quad P(H|C_2) = 0.5 \quad P(H|C_3) = 0.9
\end{align*}

\[
P(C_1) = 0.05 \quad P(C_2) = 0.25 \quad P(C_3) = 0.70
\]
Experiment 1: Heads
Which coin did I use?

P(C₁|H) = 0.006 P(C₂|H) = 0.165 P(C₃|H) = 0.829

Compare with ML posterior after Exp 1:
P(C₁|H) = 0.066 P(C₂|H) = 0.333 P(C₃|H) = 0.600

Experiment 2: Tails
Which coin did I use?

P(C₁|HT) = ? P(C₂|HT) = ? P(C₃|HT) = ?

P(C₁|HT) = αP(HT|C₁)P(C₁) = αP(H|C₁)P(T|C₁)P(C₁)

P(H|C₁) = 0.1 P(H|C₂) = 0.5 P(H|C₃) = 0.9
P(C₁) = 0.05 P(C₂) = 0.25 P(C₃) = 0.70
Experiment 2: Tails

Which coin did I use?

\[
P(C_1|HT) = 0.035 \quad P(C_2|HT) = 0.481 \quad P(C_3|HT) = 0.485
\]

\[
P(C_1|HT) = \alpha P(HT|C_1)P(C_1) = \alpha P(H|C_1)P(T|C_1)P(C_1)
\]

\[
\begin{align*}
P(H|C_1) &= 0.1 & P(H|C_2) &= 0.5 & P(H|C_3) &= 0.9 \\
P(C_1) &= 0.05 & P(C_2) &= 0.25 & P(C_3) &= 0.70
\end{align*}
\]
Your Estimate?

What is the probability of heads after two experiments?

Most likely coin: \(C_3 \)

Best estimate for \(P(H) \):

\[P(H|C_3) = 0.9 \]

\[\begin{align*}
C_1 & \quad P(H|C_1) = 0.1 \\
& \quad P(C_1) = 0.05 \\
C_2 & \quad P(H|C_2) = 0.5 \\
& \quad P(C_2) = 0.25 \\
C_3 & \quad P(H|C_3) = 0.9 \\
& \quad P(C_3) = 0.70
\end{align*} \]

Your Estimate?

Maximum A Posteriori (MAP) Estimate:
The best hypothesis that fits observed data assuming a non-uniform prior

Most likely coin: \(C_3 \)

Best estimate for \(P(H) \):

\[P(H|C_3) = 0.9 \]

\[\begin{align*}
C_3 & \quad P(H|C_3) = 0.9 \\
& \quad P(C_3) = 0.70
\end{align*} \]
Did We Do The Right Thing?

| Event (C) | P(H|C) |
|-----------|---------|
| C₁ | 0.1 |
| C₂ | 0.5 |
| C₃ | 0.9 |

- P(C₁|HT) = 0.035
- P(C₂|HT) = 0.481
- P(C₃|HT) = 0.485

C₂ and C₃ are almost equally likely.

12/1/14
A Better Estimate

Recall: \[P(H) = \sum_{i=1}^{3} P(H|C_i)P(C_i) = 0.680 \]

\[
P(C_1|HT)=0.035 \quad P(C_2|HT)=0.481 \quad P(C_3|HT)=0.485
\]

\[
P(H|C_1) = 0.1 \quad P(H|C_2) = 0.5 \quad P(H|C_3) = 0.9
\]

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error, given data assuming an arbitrary prior

\[P(H) = \sum_{i=1}^{3} P(H|C_i)P(C_i) = 0.680 \]

\[
P(C_1|HT)=0.035 \quad P(C_2|HT)=0.481 \quad P(C_3|HT)=0.485
\]

\[
P(H|C_1) = 0.1 \quad P(H|C_2) = 0.5 \quad P(H|C_3) = 0.9
\]
Comparison
After more experiments: \textbf{HTHHHHHHHH}

ML (Maximum Likelihood):
\[P(H) = 0.5 \]
after 10 experiments: \(P(H) = 0.9 \)

MAP (Maximum A Posteriori):
\[P(H) = 0.9 \]
after 10 experiments: \(P(H) = 0.9 \)

Bayesian:
\[P(H) = 0.68 \]
after 10 experiments: \(P(H) = 0.9 \)

Summary

<table>
<thead>
<tr>
<th>Prior</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>The most likely</td>
</tr>
<tr>
<td>Any</td>
<td>The most likely</td>
</tr>
<tr>
<td>Any</td>
<td>Weighted combination</td>
</tr>
</tbody>
</table>

Easy to compute

Minimum error
Great when data is scarce
Potentially much harder to compute

Still easy to compute
Incorporates prior knowledge
Bayesian Learning

Use Bayes rule:

\[
P(Y \mid X) = \frac{P(X \mid Y) P(Y)}{P(X)}
\]

Data Likelihood

Prior

Normalization

Or equivalently:

\[
P(Y \mid X) \propto P(X \mid Y) P(Y)
\]

Posterior

Parameter Estimation and Bayesian Networks

Earthquake

Burglary

Radio

Alarm

Nbr1Calls

Nbr2Calls

Now compute either MAP or Bayesian estimate

\[
P(B) = \text{Prior} + \text{data}
\]
What Prior to Use?

- Prev, you *knew*: it was one of only three coins
 - Now more complicated…
- The following are two common priors
 - **Binary variable Beta**
 - Posterior distribution is binomial
 - Easy to compute posterior
 - **Discrete variable Dirichlet**
 - Posterior distribution is multinomial
 - Easy to compute posterior

© Daniel S. Weld
Beta Distribution

- Example: Flip coin with Beta distribution as prior over p [prob(heads)]
 1. Parameterized by two positive numbers: a, b
 2. Mode of distribution ($E[p]$) is $a/(a+b)$
 3. Specify our prior belief for $p = a/(a+b)$
 4. Specify confidence in this belief with high initial values for a and b
- Updating our prior belief based on data
 - incrementing a for every heads outcome
 - incrementing b for every tails outcome

One Prior: Beta Distribution

$$\beta(x) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1-x)^{b-1},$$

$$0 \leq x \leq 1 \text{ and } a, b > 0$$

Here $\Gamma(y) = \int_0^\infty x^{y-1} e^{-x} dx$

For any positive integer y, $\Gamma(y) = (y-1)!$
Parameter Estimation and Bayesian Networks

Prior
\[P(B|\text{data}) = ? \] Beta(1,4) “+ data” = (3,7)

\[\begin{array}{c|cc}
B & \neg B \\
\hline
F & .3 \\
T & .7 \\
\end{array} \]

Prior \(P(B) = 1/(1+4) = 20\% \) with equivalent sample size 5

Parameter Estimation and Bayesian Networks

\[\begin{array}{c|cc|c|c}
E & B & A \\
\hline
T & F & T \\
F & F & F \\
F & T & T \\
F & F & T \\
F & T & F \\
\ldots & \ldots & \ldots \\
\end{array} \]

\[
\begin{align*}
P(A|E,B) &= ? \\
P(A|E,\neg B) &= ? \\
P(A|\neg E,B) &= ? \\
P(A|\neg E,\neg B) &= ?
\end{align*}
\]
Parameter Estimation and Bayesian Networks

P(A|E,B) = ? Prior
P(A|E,¬B) = ?
P(A|¬E,B) = ? Beta(2,3)
P(A|¬E,¬B) = ?

Parameter Estimation and Bayesian Networks

P(A|E,B) = ? Prior
P(A|E,¬B) = ?
P(A|¬E,B) = ? Beta(2,3) + data= (3,4)
P(A|¬E,¬B) = ?
Bayesian Learning

Use Bayes rule:

\[P(Y | X) = \frac{P(X | Y) P(Y)}{P(X)} \]

Or equivalently: \(P(Y | X) \propto P(X | Y) P(Y) \)

Naïve Bayes

\[P(Y, F_1 \ldots F_n) = P(Y) \prod_i P(F_i | Y) \]

Assume that features are conditionally independent given class variable

Works well in practice

But forces probabilities towards 0 and 1
Naïve Bayes

- Naïve Bayes assumption:
 - Features are independent given class:
 \[
 P(X_1, X_2 | Y) = P(X_1 | X_2, Y) P(X_2 | Y) = P(X_1 | Y) P(X_2 | Y)
 \]
 - More generally:
 \[
 P(X_1 \ldots X_n | Y) = \prod_{i} P(X_i | Y)
 \]

- How many parameters now?
 - Suppose \(X \) is composed of \(n \) binary features

NB with Bag of Words for text classification

- Learning phase:
 - Prior \(P(Y) \)
 - Count how many documents from each topic (prior)
 - \(P(X_i | Y) \)
 - For each of \(m \) topics, count how many times you saw word \(X_i \) in documents of this topic (+ k for prior)
 - Divide by number of times you saw the word (+ k×m)

- Test phase:
 - For each document
 - Use naïve Bayes decision rule
 \[
 h_{NB}(x) = \arg \max_y P(y)^{LengthDoc} \prod_{i=1}^{LengthDoc} P(x_i | y)
 \]
Probabilities: Important Detail!

- \(P(\text{spam} \mid X_1 \ldots X_n) = \prod P(\text{spam} \mid X_i) \)

 Any more potential problems here?

- We are multiplying lots of small numbers
 Danger of underflow!
 - 0.5^{57} = 7 \times 10^{-18}

- Solution? Use logs and add!
 - \(p_1 \times p_2 = e^{\log(p_1) + \log(p_2)} \)
 - Always keep in log form