An HMM is defined by:

- Initial distribution: \(P(X_1) \)
- Transitions: \(P(X_t|X_{t-1}) \)
- Emissions: \(P(E|X) \)
HMMs have two important independence properties:
- Markov hidden process, future depends on past via the present
- Current observation independent of all else given current state
Filtering (aka Monitoring)

- The task of tracking the agent’s belief state, $B(x)$, over time
 - $B(x)$ is a distribution over world states – repr agent knowledge
 - We start with $B(X)$ in an initial setting, usually uniform
 - As time passes, or we get observations, we update $B(X)$

- Many algorithms for this:
 - Exact probabilistic inference
 - Particle filter approximation
 - Kalman filter (one method – Real valued values)
 - invented in the 60’s for Apollo Program – real-valued state, Gaussian noise

Example: Robot Localization

Example from Michael Pfeiffer

Sensor model: never more than 1 mistake
Motion model: may not execute action with small prob.
Example: Robot Localization

Example: Robot Localization

\[t=1 \]

\[t=2 \]
Pacman – Sonar (P4)

Inference: Base Cases

“Observation”

\[P(X_1|e_1) \]
\[
P(x_1|e_1) = P(x_1, e_1)/P(e_1)
\]
\[
\propto x_1 \quad P(x_1, e_1)
\]
\[
= P(x_1)P(e_1|x_1)
\]

“Passage of Time”

\[P(X_2) \]
\[
P(x_2) = \sum_{x_1} P(x_1, x_2)
\]
\[
= \sum_{x_1} P(x_1)P(x_2|x_1)
\]
Summary: Online Belief Updates

- Every time step, we start with current \(P(X | \text{evidence}) \)
- We update for time:
 \[
P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})\]
- We update for evidence:
 \[
P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)\]
- The forward algorithm does both at once (and doesn’t normalize)

The Forward Algorithm

- We are given evidence at each time and want to know
 \[
 B_t(X) = P(X_t|e_{1:t})
 \]
- We use the single (time-passage+observation) updates:
 \[
P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t})
 = \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})
 = \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1})P(x_t|x_{t-1})P(e_t|x_t)
 = P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}, e_{1:t-1})
 \]

We can normalize as we go if we want to have \(P(x|e) \) at each time step, or just once at the end...
Example: Weather HMM

\[
B(+r) = 0.5 \\
B(-r) = 0.5 \\
B'(+r) = 0.5 \\
B'(-r) = 0.5 \\
B(+r) = 0.818 \\
B(-r) = 0.182 \\
B'(+r) = 0.627 \\
B'(-r) = 0.373 \\
B(+r) = 0.883 \\
B(-r) = 0.117
\]

| | | \(P(R_{t+1} | R_t) \) | | | \(P(U_t | R_t) \) |
|---|---|---|---|---|---|
| +r | +r | 0.7 | +r | +u | 0.9 |
| +r | -r | 0.3 | +r | -u | 0.1 |
| -r | +r | 0.3 | -r | +u | 0.2 |
| -r | -r | 0.7 | -r | -u | 0.8 |
Complexity of the Forward Algorithm?

- We are given evidence at each time and want to know
 \[B_t(X) = P(X_t|e_{1:t}) \]

- We use the single (time-passage+observation) updates:
 \[
 P(x_t|e_{1:t}) \propto X \]
 \[
 = \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})
 \]
 \[
 = \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1})P(x_t|x_{t-1})P(e_t|x_t)
 \]
 \[
 = P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}, e_{1:t-1})
 \]

- Complexity? \(O(|X|^2) \) time & \(O(X) \) space

Particle Filtering
Particle Filtering Overview

- Approximation technique to solve filtering problem
- Represents P distribution with samples
- Still operates in two steps
 - Elapse time
 - Incorporate observations

Particle Filtering

- Filtering: approximate solution
 - Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
 - Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called *particles*
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
 - This is how robot localization works in practice
 - Particle is just new name for sample
Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
 - Generally, $N \ll |X|$
 - Storing map from X to counts would defeat the purpose

- $P(x)$ approximated by \(\frac{\text{(number of particles with value } x)}{N} \)
 - More particles, more accuracy

- What is $P((3,3))$? $5/10 = 50\%$
Representation: Particles

- Our representation of \(P(X) \) is now a list of \(N \) particles (samples)
 - Generally, \(N \ll |X| \)
 - Storing map from \(X \) to counts would defeat the purpose

- \(P(x) \) approximated by \(\text{(number of particles with value } x) / N \)
 - More particles, more accuracy

- What is \(P(2,2) \)? \(0/10 = 0\% \)

- In fact, many \(x \) may have \(P(x) = 0! \)

Particles: Better Illustration

- Our representation of \(P(X) \) is now a list of \(N \) particles (samples)
 - Generally, \(N \ll |X| \)

\[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \]
Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

 \[x' = \text{sample}(P(X'|x)) \]

 Aka: \[\text{sample}(P(x_{t+1} | x_t)) \]

 - This is like prior sampling – samples’ frequencies reflect the transition probabilities
 - Here, most samples move clockwise, but some move in another direction or stay in place

- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
 - Don’t sample observation, fix it
 - Similar to likelihood weighting, downweight samples based on the evidence

 \[w(x) = P(e|x) \]

 \[B(X) \propto P(e|X)B'(X) \]

 - As before, the probabilities don’t sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of \(P(e) \))
Particle Filtering Observe Part II: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

[Demos: ghostbusters particle filtering (L15D3,4,5)]
Video of Demo – Moderate Number of Particles

Video of Demo – One Particle
In robot localization:
- We know the map, but not the robot’s position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique
Particle Filter Localization (Sonar)

Global localization with sonar sensors

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]
Robot Mapping

- **SLAM: Simultaneous Localization And Mapping**
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]
Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]