CS4 473: Artificial Intelligence

Constraint Satisfaction Problems II

Luke Zettlemoyer
(standing in for Dan Weld)

Today

- Efficient Solution of CSPs
- Local Search

Reminder: CSPs

- **CSPs:**
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

- **Goals:**
 - Here: find any solution
 - Also: find all, find best, etc.

Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it’s still NP-hard

- Filtering: Can we detect inevitable failure early?

- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)

- Structure: Can we exploit the problem structure?

Backtracking Search

```
function BACKTRACKING-SEARCH(assignment) returns solution/failure
returns RECURSIVE-BACKTRACKING([], assignment)

function RECURSIVE-BACKTRACKING(assignment, cp) returns solution/failure
if assignment is complete then return solution
else select-UNASSIGNED-Variable(Variables, assignment, cp)
    for each value in ORDER-VALUES(Variable, assignment, cp) do
        if value is consistent with assignment given Constraints(assignment) then
            add [Variable, value] to assignment
            if result of BACKTRACKING-BACKTRACKING(assignment, cp)
                return [value = value] then return result
        return failure
return failure
```

Arc Consistency and Beyond
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are simultaneously consistent.
- Arc consistency detects failure earlier than forward checking.
- Important: If X loses a value, neighbors of X need to be rechecked!
- Must rerun after each assignment!

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints.
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other.
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the k-th node.
 - Higher k more expensive to compute
 - (You need to know the k=2 case: arc consistency)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, … 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - …
 - Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

Structure
Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is $O(n \cdot v(c))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 10$
 - $2^{10} = 1024$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n \cdot d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
 - This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward: For $i = n \rightarrow 2$, apply RemoveInconsistent(Parent(X_i), X_i)
 - Assign forward: For $i = 1 \rightarrow n$, assign X_i consistently with Parent(X_i)
 - Runtime: $O(n \cdot d^2)$ (why?)

Improving Structure

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^2)(n-c) \cdot d^2)$, very fast for small $c
Cutset Conditioning

- Choose a cutset
- Instantiate the cutset (all possible ways)
- Compute residual CSP for each assignment
- Solve the residual CSPs (tree structured)

Cutset Quiz

- Find the smallest cutset for the graph below.

Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

Iterative Improvement

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe: live on the edge.
- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - i.e., hill climb with \(h(n) = \) total number of violated constraints

Iterative Algorithms for CSPs

- Example: 4-Queens
 - States: 4 queens in 4 columns (\(4^4 = 256 \) states)
 - Operators: move queen in column
 - Goal test: no attacks
 - Evaluation: \(c(n) = \) number of attacks
Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $r = \frac{\text{number of constraints}}{\text{number of variables}}$.
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What's bad about this approach?
 - Complete?
 - Optimal?

- What's good about it?

Hill Climbing Diagram

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space

Hill Climbing Quiz

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarier as time goes on

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: $p(x) \propto e^{-\frac{E(x)}{T}}$
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operations, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?

Next Time: Adversarial Search!