Search thru a Problem Space / State Space

- Input:
 - Set of states
 - Operators [and costs]
 - Start state
 - Goal state [test]
- Output:
 - Path: start \Rightarrow a state satisfying goal test
 - [May require shortest path]
 - [Sometimes just need state passing test]

Graduation?

- Getting a BS in CSE as a search problem? (don’t think too hard)
 - Space of States
 - Operators
 - Initial State
 - Goal State

Search Methods

- Depth first search (DFS)
- Breadth first search (BFS)
- Iterative deepening depth-first search (IDS)

Heuristic search

- Best first search
- Uniform cost search (UCS)
- Greedy search
- A^*
- Iterative Deepening A^* (IDA*)
- Beam search
- Hill climbing
Depth First Search
- Maintain stack of nodes to visit
- Check path to root to prune duplicates
- Evaluation
 - Complete?
 - Not for infinite spaces
 - Time Complexity?
 - $O(b^m)$
 - Space Complexity?
 - $O(bm)$

Memory a Limitation?
- Suppose:
 - 4 GHz CPU
 - 16 GB main memory
 - 100 instructions / expansion
 - 10 bytes / node
 - 400,000 expansions / sec
 - Memory filled in 400 sec … < 7 min

Breadth First Search
- Maintain queue of nodes to visit
- Evaluation
 - Complete?
 - Yes
 - Time Complexity?
 - $O(b^d)$
 - Space Complexity?
 - $O(b^d)$

Iterative Deepening Search
- DFS with limit; incrementally grow limit
- Evaluation
 - Complete?
 - Time Complexity?
 - Space Complexity?

© Daniel S. Weld

© Daniel S. Weld
Iterative Deepening Search
- DFS with limit; incrementally grow limit
- Complete?
 - Yes
- Time Complexity?
 - $O(b^d)$
- Space Complexity?
 - $O(b^d)$

Cost of Iterative Deepening
<table>
<thead>
<tr>
<th>b</th>
<th>ratio ID to DFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>1.08</td>
</tr>
<tr>
<td>100</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Speed

<table>
<thead>
<tr>
<th>Puzzle</th>
<th>BFS</th>
<th>Iter. Deep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Puzzle</td>
<td>10^5</td>
<td>10^5</td>
</tr>
<tr>
<td>2x2x2 Rubik’s</td>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td>15 Puzzle</td>
<td>10^{13}</td>
<td>1Mx</td>
</tr>
<tr>
<td>3x3x3 Rubik’s</td>
<td>10^{19}</td>
<td>8x</td>
</tr>
<tr>
<td>24 Puzzle</td>
<td>10^{25}</td>
<td>10^{37}</td>
</tr>
</tbody>
</table>

Why the difference?
- Rubik has higher branch factor
- 15 puzzle has greater depth

Costs on Actions

Objective: Path with smallest overall cost

Best-First Search
- Generalization of breadth-first search
- Fringe = Priority queue of nodes to be explored
- Cost function $f(n)$ applied to each node

BFS

What will BFS return?
- … finds the shortest path in terms of number of transitions.
- It does not find the least-cost path.
Priority Queue Refresher

- A priority queue is a data structure in which you can insert and retrieve (key, value) pairs with the following operations:
 - `pq.push(key, value)` inserts (key, value) into the queue.
 - `pq.pop()` returns the key with the lowest value, and removes it from the queue.

- You can decrease a key’s priority by pushing it again
- Unlike a regular queue, insertions aren’t constant time, usually \(O(\log n)\)
- We’ll need priority queues for cost-sensitive search methods

Old Friends

- **Breadth First** =
 - Best First
 - with \(f(n) = \text{depth}(n)\)

- **Dijkstra’s Algorithm (Uniform cost)** =
 - Best First
 - with \(f(n) = \text{the sum of edge costs from start to } n\)

- **Dijkstra’s Algorithm (Uniform cost)** =
 - Best First
 - with \(f(n) = \text{the sum of edge costs from start to } n\)

- **Old Friends**

Uniform Cost Search

- **Best-First Search**
 - Generalization of breadth-first search
 - Fringe = *Priority* queue of nodes to be explored
 - Cost function \(f(n)\) applied to each node

  ```
  Add initial state to priority queue
  While queue not empty
    Node = head(queue)
    If goal?(node) then return node
    Add children of node to queue
  ```

Uniform Cost Search

- **Best-First Search**
 - Generalization of breadth-first search
 - Fringe = *Priority* queue of nodes to be explored
 - Cost function \(f(n)\) applied to each node

  ```
  Add initial state to priority queue
  While queue not empty
    Node = head(queue)
    If goal?(node) then return node
    Add children of node to queue
  ```

Uniform Cost Search

Expansion order:

- **S, p, d, b, e, a, f, e, G**

Cost contours (not all shown)

- **C* / \(\varepsilon\)** tiers
 - \(C^*\) = Optimal cost
 - \(\varepsilon\) = Minimum cost of an action

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>Y if finite</td>
<td>N</td>
<td>(O(b^d))</td>
<td>(O(b^d))</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y*</td>
<td>(O(b^d))</td>
<td>(O(b^d))</td>
</tr>
<tr>
<td>UCS</td>
<td>Y*</td>
<td>Y</td>
<td>(O(b^{d*}))</td>
<td>(O(b^{d*}))</td>
</tr>
</tbody>
</table>
Uniform Cost Issues

- Remember: explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every direction
 - No information about goal location

Uniform Cost: Pac-Man

- Cost of 1 for each action
- Explores all of the states, but one

What is a Heuristic?

- An estimate of how close a state is to a goal
- Designed for a particular search problem

What is a Heuristic?

- An estimate of how close a state is to a goal
- Designed for a particular search problem

Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Greedy Search

Expand the node that seems closest...

What can go wrong?
Greedy Search

- A common case:
 - Best-first takes you straight to a (suboptimal) goal
- Worst-case: like a badly-guided DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking
- Like DFS in completeness (if finite # states w/ cycle checking)

A* Search

Hart, Nilsson & Rafael 1968
Best first search with $f(n) = g(n) + h(n)$
- $g(n)$ = sum of costs from start to n
- $h(n)$ = estimate of lowest cost path $n \rightarrow$ goal
 - $h(\text{goal}) = 0$

If $h(n)$ is admissible and monotonic then A* is optimal

Underestimates cost of reaching goal from node

f values increase from node to descendants (triangle inequality)

A* Search

Hart, Nilsson & Rafael 1968
Best first search with $f(n) = g(n) + h(n)$
- $g(n)$ = sum of costs from start to n
- $h(n)$ = estimate of lowest cost path $n \rightarrow$ goal
 - $h(\text{goal}) = 0$

Can view as cross-breed:
- $g(n)$ ~ uniform cost search
- $h(n)$ ~ greedy search

Best of both worlds…

Is Manhattan distance admissible?
- Underestimate?

Is Manhattan distance monotonic?
- f values increase from node to children
- (triangle inequality)

Euclidean Distance
- Admissible?
- Monotonic?
European Example

Optimality of A*

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

\[
f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0
\]
\[
> g(G_1) \quad \text{since } G_2 \text{ is suboptimal}
\]
\[
\geq f(n) \quad \text{since } h \text{ is admissible}
\]

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.

Optimality Continued

Lemma: A* expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

A* Summary

- **Pros**
 - Produces optimal cost solution!
 - Does so quite quickly (focused)

- **Cons**
 - Maintains priority queue…
 - Which can get exponentially big 😞