CSE 473 Propositional Logic
SAT Algorithms

Luke Zettlemoyer
(With many slides from Dan Weld, Raj Rao, Mausam, Stuart Russell, Dieter Fox, Henry Kautz, Min-Yen Kan...)

Irrationally held truths may be more harmful than reasoned errors.

- Thomas Huxley (1825-1895)
Propositional Logic

• **Syntax**
 – Atomic sentences: P, Q, ...
 – Connectives: ∧, ∨, ¬, ⇒

• **Semantics**
 – Truth Tables

• **Inference**
 – Modus Ponens
 – Resolution
 – DPLL
 – GSAT

• **Complexity**
Truth tables for connectives

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$\neg P$</td>
<td>$P \land Q$</td>
<td>$P \lor Q$</td>
<td>$P \implies Q$</td>
<td>$P \iff Q$</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Types of Reasoning (Inference)

• **Deduction** *(showing entailment, \(|=\))*

 \(S = \text{question}\)

 Prove that \(\text{KB} \models S\)

 Typically use rules to derive new formulas from old (inference)

• **Model Finding** *(showing satisfiability)*

 \(S = \text{description of problem}\)

 Show \(S\) is satisfiable
Validity and Satisfiability

A sentence is valid if it is true in all models,
 e.g., \(\text{True}, \ A \lor \neg A, \ A \Rightarrow A, \ (A \land (A \Rightarrow B)) \Rightarrow B \)

Validity is connected to inference via the Deduction Theorem:
 \(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha) \) is valid

A sentence is satisfiable if it is true in some model
 e.g., \(A \lor B, \ C \)

A sentence is unsatisfiable if it is true in no models
 e.g., \(A \land \neg A \)

Satisfiability is connected to inference via the following:
 \(KB \models \alpha \) if and only if \((KB \land \neg \alpha) \) is unsatisfiable
 i.e., prove \(\alpha \) by reductio ad absurdum
Inference

$KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$

Consequences of KB are a haystack; α is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: i is sound if
whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if
whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.
Truth Tables for Inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Enumerate rows (different assignments to symbols),
if KB is true in row, check that α is too

Problem: exponential time and space!
Logical Equivalence

Two sentences are logically equivalent iff true in same models:

\(\alpha \equiv \beta \) if and only if \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Proof Methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications
 Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form

Model checking
 truth table enumeration (always exponential in n)
 improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
 heuristic search in model space (sound but incomplete)
 e.g., min-conflicts-like hill-climbing algorithms
Special Syntactic Forms

• General Form:

 \[(q \land \neg r) \rightarrow s) \land \neg (s \land t)\]

• Conjunction Normal Form (CNF)

 \[\neg q \lor r \lor s \land (\neg s \lor \neg t)\]

 Set notation: \{ (\neg q, r, s), (\neg s, \neg t) \}

 empty clause () = false

• Binary clauses: 1 or 2 literals per clause

 \[\neg q \lor r\] \quad \[\neg s \lor \neg t\]

• Horn clauses: 0 or 1 positive literal per clause

 \[\neg q \lor \neg r \lor s\] \quad \[\neg s \lor \neg t\]

 \[(q \land r) \rightarrow s\] \quad \[(s \land t) \rightarrow false\]
Propositional Logic: Inference Algorithms

1. Backward & Forward Chaining
2. Resolution (Proof by Contradiction)
3. Exhaustive Enumeration
4. DPLL (Davis, Putnam Loveland & Logemann)
5. GSAT

\{ Deduction \}
\{ Model Finding \}
Example

KB with Horn Clauses

\[
P \Rightarrow Q
\]
\[
L \land M \Rightarrow P
\]
\[
B \land L \Rightarrow M
\]
\[
A \land P \Rightarrow L
\]
\[
A \land B \Rightarrow L
\]
\[
A
\]
\[
B
\]

Proof And/Or Graph
Inference Technique II: Forward/Backward Chaining

• Require sentences to be in **Horn Form**:

 KB = conjunction of Horn clauses

 – Horn clause =

 • proposition symbol or

 • “(conjunction of symbols) ⇒ symbol”

 (i.e. clause with at most 1 positive literal)

 – E.g., KB = C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)

• F/B chaining based on “Modus Ponens” rule:

 \[
 \alpha_1, \ldots, \alpha_n, \quad \alpha_1 \land \ldots \land \alpha_n \Rightarrow \beta
 \]

 B

 – Sound and complete for Horn clauses
Forward chaining algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false

local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 PUSH(HEAD[c], agenda)
 return false
Query = Q
(i.e. “Is Q true?”)
Forward chaining example
Backward chaining

Idea: work backwards from the query q:

- to prove q by BC,
 - check if q is known already, or
 - prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on goal stack

Avoid repeated work: check if new subgoal
- 1. has already been proved true, or
- 2. has already failed
Backward chaining example
Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
 – e.g., object recognition, routine decisions

• FC may do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,
 – e.g., How do I get an A in this class?
 – e.g., What is my best exit strategy out of the classroom?
 – e.g., How can I impress my date tonight?

• Complexity of BC can be much less than linear in size of KB
Inference 2: Resolution
[Robinson 1965]

\{ (p \lor \alpha), (\neg p \lor \beta \lor \gamma) \} \vdash_R (\alpha \lor \beta \lor \gamma)

Correctness

If S1 \vdash_R S2 then S1 \models S2

Refutation Completeness:

If S is unsatisfiable then S \vdash_R ()
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \beta \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).
 \[(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1}) \]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).
 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. Move \(\neg \) inwards using de Morgan's rules and double-negation:
 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \lor \neg P_{2,1}) \lor B_{1,1}) \]

4. Apply distributivity law (\(\land \) over \(\lor \)) and flatten:
 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
Resolution algorithm

- To show $\text{KB} \vdash \alpha$, use proof by contradiction, i.e., show $\text{KB} \land \neg \alpha$ unsatisfiable

```plaintext
function PL-RESOLUTION (KB, \alpha) returns true or false

    clauses \leftarrow \text{the set of clauses in the CNF representation of } KB \land \neg \alpha
    new \leftarrow \{ \}
    loop do
        for each $C_i, C_j$ in clauses do
            resolvents \leftarrow PL-RESOLVE (C_i, C_j)
            if resolvents contains the empty clause then return true
            new \leftarrow new \cup resolvents
        end loop
    end loop
    if new \subseteq clauses then return false
    clauses \leftarrow clauses \cup new
```
Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a reptile. If the unicorn is either immortal or a reptile, then it is horned.

Prove: the unicorn is horned.

\[
\begin{align*}

&M = \text{mythical} \\
&I = \text{immortal} \\
&R = \text{reptile} \\
&H = \text{horned}
\end{align*}
\]
Resolution as Search

• States?
• Operators
Model Checking: Truth tables for inference

\[
\begin{array}{ccccccccc}
B_{1,1} & B_{2,1} & P_{1,1} & P_{1,2} & P_{2,1} & P_{2,2} & P_{3,1} & KB & \alpha_1 \\
false & true \\
false & false & false & false & false & false & true & true & true \\
false & true & false & false & false & false & true & true & true \\
false & true & false & true & false & true & true & true & true \\
false & true \\
true & false & false
\end{array}
\]

\[
\text{alpha}_1 = \text{not } P_{\{12\}} \text{ ("[1,2] is safe")}
\]
Inference 4: DPLL
(Enumeration of *Partial* Models)
[Davis, Putnam, Loveland & Logemann 1962]
Version 1

dpll_1(pa) {
 if (pa makes F false) return false;
 if (pa makes F true) return true;
 choose P in F;
 if (dpll_1(pa ∪ {P=0})) return true;
 return dpll_1(pa ∪ {P=1});
}

Returns true if F is satisfiable, false otherwise
DPLL Version 1

\[(a \lor b \lor c)\]
\[(a \lor \neg b)\]
\[(a \lor \neg c)\]
\[(\neg a \lor c)\]
DPLL Version 1

\[(a \lor b \lor c)\]
\[(a \lor \neg b)\]
\[(a \lor \neg c)\]
\[(\neg a \lor c)\]
DPLL Version 1

\[(F \lor b \lor c)\]
\[(F \lor \neg b)\]
\[(F \lor \neg c)\]
\[(T \lor c)\]
DPLL Version 1

(F v F v c)
(F v T)
(F v ¬c)
(T v c)
DPLL Version 1

(F ∨ F ∨ F)
(F ∨ T)
(F ∨ T)
(T ∨ F)
DPLL Version 1
(a ∨ b ∨ c)
(a ∨ ¬b)
(a ∨ ¬c)
(¬a ∨ c)
DPLL as Search

- Search Space?
- Algorithm?
Improving DPLL

If literal L_1 is true, then clause $(L_1 \lor L_2 \lor \ldots)$ is true.

If clause C_1 is true, then $C_1 \land C_2 \land C_3 \land \ldots$ has the same value as $C_2 \land C_3 \land \ldots$.

Therefore: Okay to delete clauses containing true literals!
If literal L_1 is true, then clause $(L_1 \lor L_2 \lor ...) \text{ is true}$
If clause C_1 is true, then $C_1 \land C_2 \land C_3 \land ...$ has the same value as $C_2 \land C_3 \land ...$
Therefore: Okay to delete clauses containing true literals!
If literal L_1 is false, then clause $(L_1 \lor L_2 \lor L_3 \lor ...) \text{ has}$ the same value as $(L_2 \lor L_3 \lor ...)$
Therefore: Okay to delete shorten containing false literals!
Improving DPLL

If literal L_1 is true, then clause $(L_1 \lor L_2 \lor \ldots)$ is true.

If clause C_1 is true, then $C_1 \land C_2 \land C_3 \land \ldots$ has the same value as $C_2 \land C_3 \land \ldots$.

Therefore: Okay to delete clauses containing true literals!

If literal L_1 is false, then clause $(L_1 \lor L_2 \lor L_3 \lor \ldots)$ has the same value as $(L_2 \lor L_3 \lor \ldots)$.

Therefore: Okay to delete shortening containing false literals!

If literal L_1 is false, then clause (L_1) is false.

Therefore: the empty clause means false!
DPLL version 2

dpl1_2(F, literal) {
 remove clauses containing literal
 if (F contains no clauses) return true;
 shorten clauses containing ¬literal
 if (F contains empty clause) return false;
 choose V in F;
 if (dpl1_2(F, ¬V)) return true;
 return dpl1_2(F, V);
}

Partial assignment corresponding to a node is the set of chosen literals on the path from the root to the node
DPLL Version 2

(a ∨ b ∨ c)
(a ∨ ¬b)
(a ∨ ¬c)
(¬a ∨ c)
DPLL Version 2

(F ∨ b ∨ c)
(F ∨ ¬b)
(F ∨ ¬c)
(T ∨ c)
(\neg b)
(\neg c)

(b \lor c)

DPLL Version 2
DPLL Version 2

(F ∨ c)
(T)
(¬c)
DPLL Version 2

\[(c)\]

\[(\neg c)\]
DPLL Version 2

(F)

(T)

(a)

(b)

(c)
DPLL Version 2

Empty clause!

()
Representing Formulae

• CNF = Conjunctive Normal Form
 – Conjunction (\land) of Disjunctions (\lor)

• Represent as set of sets
 – $((A, B), (\neg A, C), (\neg C))$
 – $((\neg A), (A))$
 – $(())$
 – $((A))$
 – $(())$
Structure in Clauses

• Unit Literals
 A literal that appears in a singleton clause
 \{\neg b \ c\} \{\neg c\} \{a \neg b \ e\} \{d \ b\} \{e \ a \neg c\}
 Might as well set it true! And simplify
 \{\neg b\} \{a \neg b \ e\} \{d \ b\}

• Pure Literals
 – A symbol that always appears with same sign
 – \{a \neg b \ c\} \{\neg c \ d \neg e\} \{\neg a \neg b \ e\} \{d \ b\} \{e \ a \neg c\}
 Might as well set it true! And simplify
 \{a \neg b \ c\} \{\neg a \neg b \ e\} \{e \ a \neg c\}
In Other Words

Formula $(L) \land C_2 \land C_3 \land \ldots$ is only true when literal L is true.

Therefore: Branch immediately on unit literals!

May view this as adding constraint propagation techniques into play.
In Other Words

Formula \((L) \land C_2 \land C_3 \land \ldots\) is only true when literal \(L\) is true.

Therefore: Branch immediately on unit literals!

If literal \(L\) does not appear negated in formula \(F\), then setting \(L\) true preserves satisfiability of \(F\).

Therefore: Branch immediately on pure literals!

May view this as adding constraint propagation techniques into play.
DPLL (previous version)
Davis – Putnam – Loveland – Logemann

dplll(F, literal) {
 remove clauses containing literal
 if (F contains no clauses) return true;
 shorten clauses containing \(-\)literal
 if (F contains empty clause)

 return dplll(F, L);
 choose V in F;
 if (dplll(F, \(-\)V)) return true;
 return dplll(F, V);
}

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal) {
 remove clauses containing literal
 if (F contains no clauses) return true;
 shorten clauses containing ¬literal
 if (F contains empty clause)
 return false;
 if (F contains a unit or pure L)
 return dpll(F, L);
 choose V in F;
 if (dpll(F, ¬V)) return true;
 return dpll(F, V);
}
(a ⊕ b ⊕ c)
(a ⊕ ¬b)
(a ⊕ ¬c)
(¬a ⊕ c)

DPLL (for real)
Compare with DPLL Version 1

\[(a \lor b \lor c)\]

\[(a \lor \neg b)\]

\[(a \lor \neg c)\]

\[(\neg a \lor c)\]
DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){
 remove clauses containing literal
 if (F contains no clauses) return true;
 shorten clauses containing ¬literal
 if (F contains empty clause)
 return false;
 if (F contains a unit or pure L)
 return dpll(F, L);
 choose V in F;
 if (dpll(F, ¬V)) return true;
 return dpll(F, V);
}
Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-unit, non-pure) proposition for branching.

• Idea: identify a most constrained variable
 – Likely to create many unit clauses

• MOM’s heuristic:
 – Most occurrences in clauses of minimum length
Success of DPLL

• 1962 – DPLL invented
• 1992 – 300 propositions
• 1997 – 600 propositions (satz)
• Additional techniques:
 – Learning conflict clauses at backtrack points
 – Randomized restarts
 – 2002 (zChaff) 1,000,000 propositions – encodings of hardware verification problems
Other Ideas?

• How else could we solve SAT problems?
WalkSat (Take 1)

• *Local* search (Hill Climbing + Random Walk) over space of *complete* truth assignments
 – With prob p: flip any variable in any unsatisfied clause
 – With prob $(1-p)$: flip *best* variable in any unsat clause
 • best = one which minimizes #unsatisfied clauses
Refining Greedy Random Walk

• Each flip
 – makes some false clauses become true
 – breaks some true clauses, that become false
• Suppose $s_1 \rightarrow s_2$ by flipping x. Then:
 $$\#\text{unsat}(s_2) = \#\text{unsat}(s_1) - \text{make}(s_1,x) + \text{break}(s_1,x)$$
• Idea 1: if a choice breaks nothing, it’s likely good!
• Idea 2: near the solution, only the break count matters
 – the make count is usually 1
Walksat (Take 2)

state = random truth assignment;
while ! GoalTest(state) do
 clause := random member \{ C | C is false in state \};
 for each x in clause do compute break[x];
 if exists x with break[x]=0 then var := x;
 else
 with probability p do
 var := random member \{ x | x is in clause \};
 else
 var := arg x min \{ break[x] | x is in clause \};
 endif
 state[var] := 1 – state[var];
end
return state;

Put everything inside of a restart loop. Parameters: p, max_flips, max_runs
Random 3-SAT

- Random 3-SAT
 - sample uniformly from space of all possible 3-clauses
 - n variables, l clauses

- Which are the hard instances?
 - around $l/n = 4.3$
Random 3-SAT

- Varying problem size, n
- Complexity peak appears to be largely invariant of algorithm
 - backtracking algorithms like Davis-Putnam
 - local search procedures like GSAT
- *What’s so special about 4.3?*
Random 3-SAT

- Complexity peak coincides with solubility transition
 - \(l/n < 4.3 \) problems under-constrained and SAT
 - \(l/n > 4.3 \) problems over-constrained and UNSAT
 - \(l/n=4.3 \), problems on “knife-edge” between SAT and UNSAT
Prop. Logic Themes

• **Expressiveness**
 Expressive but awkward
 No notion of objects, properties, or relations
 Number of propositions is fixed

• **Tractability**
 NP in general
 Completeness / speed tradeoff
 Horn clauses, binary clauses