Neural Networks and Ensemble Learning
What if you want your neural network to predict **continuous** outputs rather than +1/-1 (i.e., perform regression)?

E.g., Teaching a network to drive
Continuous Outputs with Sigmoid Networks

Output: \[v = g(w^T u) = g\left(\sum_i w_i u_i\right) \]

\[u = (u_1 \quad u_2 \quad u_3)^T \]

Sigmoid output function:

\[g(a) = \frac{1}{1 + e^{-\beta a}} \]

Parameter \(\beta \) controls the slope
Learning the weights

Given: Training data (input u, desired output d)

Problem: How do we learn the weights w?

Idea: *Minimize squared error* between network’s output and desired output:

$$E(w) = (d - v)^2$$

where $v = g(w \cdot u)$

Starting from random values for w, want to change w so that $E(w)$ is minimized – How?
Learning by Gradient-Descent

(opposite of “Hill-Climbing”)

Change \(w \) so that \(E(w) \) is minimized

- Use Gradient Descent: Change \(w \) in proportion to
 \(-dE/dw\) (why?)

\[
E(w) = (d - v)^2 \quad v = g(w \cdot u)
\]

\[
w \rightarrow w - \varepsilon \frac{dE}{dw}
\]

\[
\frac{dE}{dw} = -2(d - v) \frac{dv}{dw} = -2(d - v)g'(w \cdot u)u
\]

Derivative of sigmoid

\(\text{delta} = \text{error} \)

Also known as the “delta rule” or “LMS (least mean square) rule”
But wait!

This rule is for a one layer network

• One layer networks are not that interesting!! (remember XOR?)

What if we have multiple layers?
Learning Multilayer Networks

\[v_i = g \left(\sum_j W_{ji} g \left(\sum_k w_{kj} u_k \right) \right) \]

Start with random weights \(W, w \)

Given input vector \(u \), network produces output vector \(v \)

Use gradient descent to find \(W \) and \(w \) that minimize total error over all output units (labeled \(i \)):

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

This leads to the famous “Backpropagation” learning rule
Backpropagation: Output Weights

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

\[v_i = g(\sum_j W_{ji} x_j) \]

Learning rule for hidden-output weights \(W \):

\[W_{ji} \rightarrow W_{ji} - \varepsilon \frac{dE}{dW_{ji}} \left\{ \text{gradient descent} \right\} \]

\[\frac{dE}{dW_{ji}} = -(d_i - v_i) g'(\sum_j W_{ji} x_j) x_j \left\{ \text{delta rule} \right\} \]
Backpropagation: Hidden Weights

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

\[v_i^m = g(\sum_j W_{ji} x_j) \]

\[x_j = g(\sum_k w_{kj} u_k) \]

Learning rule for input-hidden weights \(w \):

\[w_{kj} \rightarrow w_{kj} - \varepsilon \frac{dE}{dw_{kj}} \quad \text{But:} \quad \frac{dE}{dw_{kj}} = \frac{dE}{dx_j} \cdot \frac{dx_j}{dw_{kj}} \{ \text{chain rule} \} \]

\[\frac{dE}{dw_{kj}} = \left[- \sum_i (d_i - v_i) g'(\sum_j W_{ji} x_j) W_{ji} \right] \cdot \left[g'(\sum_k w_{kj} u_k) u_k \right] \]
Examples: Pole Balancing and Backing up a Truck
(courtesy of Keith Grochow)

• Neural network learns to balance a pole on a cart
 • Input: $x_{\text{cart}}, v_{\text{cart}}, \theta_{\text{pole}}, v_{\text{pole}}$
 • Output: New force on cart

• Network learns to back a truck into a loading dock
 • Input: x, y, θ of truck
 • Output: Steering angle
Ensemble Learning

Sometimes each learning technique yields a different “hypothesis” (function)

But no perfect hypothesis...

Could we combine several imperfect hypotheses to get a better hypothesis?
Why Ensemble Learning?

Wisdom of the Crowds...
Example

Combine 3 linear classifiers
⇒ More complex classifier

This line is one simple classifier saying that everything to the left is + and everything to the right is -
Ensemble Learning: Motivation

Analogies:

• Elections combine voters' choices to pick a good candidate (hopefully)
• Committees combine experts' opinions to make better decisions
• Students working together on a capstone project

Intuitions:

Individuals make mistakes but the "majority" may be less likely to

Individuals often have partial knowledge; a committee can pool expertise to make better decisions
Ensemble Technique 1: Bagging

Combine hypotheses (classifiers) via majority voting

instance

\[X \]

classification

\[\text{Majority}(h_1(x), h_2(x), h_3(x), h_4(x), h_5(x)) \]

Ensemble of hypotheses

For the classification to be wrong, at least 3 out of 5 hypotheses have to be wrong
Bagging: Details

1. Generate m new training datasets by sampling with replacement from the given dataset

2. Train m classifiers h_1, \ldots, h_m (e.g., decision trees), one from each newly generated dataset

3. Classify a new input by running it through the m classifiers and choosing the class that receives the most “votes”

Example: *Random forest* = Bagging with m decision tree classifiers, each tree constructed from random subset of attributes
Bagging: Analysis

• Assumptions:
 - Each h_i makes error with probability p
 - The hypotheses are independent

• Majority voting of n hypotheses:
 - k hypotheses make an error: $\binom{n}{k} p^k (1-p)^{n-k}$
 - Majority makes an error: $\sum_{k>n/2} \binom{n}{k} p^k (1-p)^{n-k}$
 - With $n=5$, $p=0.1 \Rightarrow \text{err(majority)} < 0.01$

Error probability went down from 0.1 to 0.01!
Weighted Majority Voting

In practice, hypotheses rarely independent

Some hypotheses have less errors than others ⇒ all votes are not equal!

Idea: Let’s take a weighted majority

How do we compute the weights?
Next Time

• Weighted Majority Ensemble Classification
 • Boosting
• Survey of AI Applications
• To Do:
 • Project 4 due tonight!
 • Finish Chapter 18