(Yet another) History of life as we know it...
Joint Probability

\[p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} \]

Marginal Probability

\[P(X = x_i) = \sum_j P(x_i, y_j) = \frac{c_i}{N} \]
\[P(Y = y_j) = \sum_i P(x_i, y_i) = \frac{r_j}{N} \]

Summing out a variable is called *marginalization*

Conditional Probability

\[p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i} \]
Thomas Bayes

Reverend Thomas Bayes
Nonconformist minister
(1702-1761)

Publications:

- *Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and Government is the Happiness of His Creatures* (1731)
- *An Introduction to the Doctrine of Fluxions* (1736)
- *An Essay Towards Solving a Problem in the Doctrine of Chances* (1764)
Start with Definition of Conditional Probability

\[P(x \mid y) = \frac{P(x, y)}{P(y)} \]

\[P(y \mid x) = \frac{P(y, x)}{P(x)} = \frac{P(x, y)}{P(x)} \]

Therefore?
Bayes’ Rule

\[P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x) \]

i.e.

\[P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} \]

What is this useful for?

\[P(Cause \mid Effect) = \frac{P(Effect \mid Cause)P(Cause)}{P(Effect)} \]
Bayes’ rule is used to Compute **Diagnostic** Probability from **Causal** Probability

\[
P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}
\]

E.g. let M be meningitis, S be stiff neck

\[
P(M) = 0.0001,
\]

\[
P(S) = 0.1,
\]

\[
P(S|M) = 0.8 \quad \text{(note: these can be estimated from patients)}
\]

\[
P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008
\]

Note: posterior probability of meningitis still very small!

(But chance of M did increase from 0.0001 to 0.0008 given stiff neck)
Normalization in Bayes’ Rule

\[P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \alpha P(y \mid x) P(x) \]

\[\alpha = \frac{1}{P(y)} = \]

\(\alpha \) is called the normalization constant (can be calculated by summing over numerator values)
Bayes Example 1: State Estimation

- Suppose a robot obtains measurement z
- What is $P(\text{doorOpen}/z)$?
- Use Bayes’ rule!
Causal vs. Diagnostic Reasoning

- $P(\text{open}|z)$ is diagnostic.
- $P(z|\text{open})$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge to diagnose a situation:

$$P(\text{open} \mid z) = \frac{P(z \mid \text{open})P(\text{open})}{P(z)}$$
State Estimation Example

- Suppose: $P(z|\text{open}) = 0.6 \quad P(z|\neg\text{open}) = 0.3$
- $P(\text{open}) = P(\neg\text{open}) = 0.5$
- $P(\text{open}|z) = \ ?$

$$P(\text{open} | z) = \frac{P(z | \text{open})P(\text{open})}{P(z | \text{open})p(\text{open}) + P(z | \neg\text{open})p(\neg\text{open})}$$

$$P(\text{open} | z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{0.30}{0.45} = 0.67$$

Measurement z raises the probability that the door is open from 0.5 to 0.67
Is there a general representation scheme for efficient probabilistic inference?

Yes!
Enter... Bayesian networks
What are Bayesian networks?

- Simple, graphical notation for conditional independence assertions
 - Allows compact specification of full joint distributions
Example: Back at the Dentist’s

- Topology of network encodes conditional independence assertions:
 - Weather is independent of the other variables
 - Toothache and Catch are conditionally independent of each other given Cavity
Conditional Independence and the “Naïve Bayes Model”

\[
P(Cavity|\text{toothache} \land \text{catch}) = \alpha P(\text{toothache} \land \text{catch}|Cavity)P(Cavity) = \alpha P(\text{toothache}|Cavity)P(\text{catch}|Cavity)P(Cavity)
\]

This is an example of a naïve Bayes model:

\[
P(Cause, Effect_1, \ldots, Effect_n) = P(Cause)\prod_i P(Effect_i|Cause)
\]

Total number of parameters is linear in \(n\)
Bayesian networks

- **Syntax:**
 - set of nodes, one per random variable
 - directed, acyclic graph (link ≈ "directly influences")
 - conditional distribution for each node given its parents:
 \[P(X_i | \text{Parents (} X_i\text{)}) \]

- For discrete variables \(X_i \), conditional distribution = conditional probability table (CPT) = probabilities for \(X_i \) given each combination of parent values
Example 2: Burglars and Earthquakes

- You are at a “Done with the AI class” party.
- Neighbor John calls to say your home alarm has gone off (but neighbor Mary doesn't).
- Sometimes your alarm is set off by minor earthquakes.
- Question: Is your home being burglarized?
Next Time

- Bayesian Networks for Burglary Detection and More!
- Inference Algorithms
 - Variable Elimination (VE)
- Hidden Markov Models
- To Do:
 - Project 3 due Sunday before midnight

Bayes rules!