CSE 473

Lecture 15

Markov Decision Processes (MDPs)

“Heads I do, tails I'm outta here.”
Course Overview: Where are we?

- Introduction & Agents
- Search and Heuristics
- Adversarial Search
- Logical Knowledge Representation
- Markov Decision Processes (MDPs)
- Reinforcement Learning
- Uncertainty & Bayesian Networks
- Machine Learning
Markov Decision Processes

- Planning Under Uncertainty
- Mathematical Framework
- Bellman Equation
- Value Iteration
- Policy Iteration
- Reinforcement Learning

Andrey Markov
(1856-1922)
Planning Agent

Environment

Static vs. Dynamic

What action next?

Percepts

Fully vs. Partially Observable

Actions

Deterministic vs. Stochastic
Review: Expectimax

- What if we don’t know what the result of an action will be? E.g.,
 - In Solitaire, next card is unknown
 - In Pacman, the ghosts act randomly

- Can do expectimax search
 - Max nodes as in minimax search
 - Chance nodes, like min nodes, except the outcome is uncertain - take average (expectation) of children
 - Calculate expected utilities

- Today, we formalize this as a Markov Decision Process
 - Handles *intermediate rewards & infinite search trees*
 - More efficient processing
Example: Grid World

- Walls block the agent’s path
- Agent’s actions are noisy:
 - 80% of the time, North action takes the agent North (assuming no wall)
 - 10% - actually go West
 - 10% - actually go East
 - If there is a wall in the chosen direction, the agent stays put
- Small “living” penalty (e.g., -0.04) each step
- Big reward/penalty (e.g., +1 or -1) comes at the end
- Goal: maximize sum of rewards
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Probability that action \(a \) in \(s \) leads to \(s' \)
 i.e., \(P(s' | s, a) \)
 - Also called “the model”
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state
 - Maybe a terminal state
What is Markov about MDPs?

- “Markov” generally means that
 - Given the present state, the future is independent of the past

- For Markov decision processes, “Markov” means:

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0)
= P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]

Next state only depends on current state and action
Solving MDPs

- In deterministic search problems, want an optimal path or plan (sequence of actions) from start to a goal
- MDP: Stochastic actions, don’t know what next state will be
- Instead of path/plan, use an optimal policy $\pi^* : S \rightarrow A$
 - Policy π prescribes an action for every state
 - Defines a reflex agent
 - An optimal policy maximizes expected reward if followed
Optimal policy?

Assume \(R(s, a, s') = -0.04 \) for all non-terminal \(s \)
More Example Optimal Policies

Conservative

R(s) = -0.01

Aggressive

R(s) = -0.4

Suicidal

R(s) = -2.0
Another Example:
High-Low Card Game
Suppose three card types: 2, 3, 4
- Infinite deck, twice as many 2’s

Start with 3 showing

After each card, say “high” or “low”

New card is revealed
- If you’re right, you win the points shown on the new card
- Tie: no reward, choose again
- If you’re wrong, game ends

Differences from expectimax problems:
- #1: get rewards as you go
- #2: you might play forever!
High-Low as an MDP

- **States:**
 - 2, 3, 4, done

- **Actions:**
 - High, Low

- **Model:** $T(s, a, s') = P(s' | s, a)$:
 - $P(s' = 4 | 4, Low) = 1/4$
 - $P(s' = 3 | 4, Low) = 1/4$
 - $P(s' = 2 | 4, Low) = 1/2$
 - $P(s' = \text{done} | 4, Low) = 0$
 - $P(s' = 4 | 4, High) = 1/4$
 - $P(s' = 3 | 4, High) = 0$
 - $P(s' = 2 | 4, High) = 0$
 - $P(s' = \text{done} | 4, High) = 3/4$
 - ...

- **Rewards:** $R(s, a, s')$:
 - Number shown on s' if $s' > s$ and $a = \text{"High"}$ etc.
 - 0 otherwise

- **Start:** 3
Expectimax-like Search Tree for High-Low

High

Low

T = 0.5, R = 2

T = 0.25, R = 0

T = 0, R = 0

T = 0.25, R = 0

done

2

3

4

High

Low

High

Low

3, Low

3, High

3
Each MDP state gives an expectimax-like search tree

\[(s, a, s')\] is called a transition

\[T(s, a, s') = P(s' | s, a)\]

Reward = \[R(s, a, s')\]
Utilities of Reward Sequences

- **What is an “optimal” policy?**
 - Each transition s,a,s' produces a reward (+ve, -ve, or 0)
 - Need to define utility of a *sequence of rewards*

- **Idea 1:**
 - Additive utility:
 \[
 U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \ldots
 \]
Defining Utilities

- Problem: Infinite state sequences have infinite total reward

- Solutions:
 - Impose a *Finite Horizon* (deadline):
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Absorbing state: guarantee that a terminal state will eventually be reached (like “done” for High-Low)
 - Discounting: Make infinite sum finite using γ ($0 < \gamma < 1$)
 \[
 U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \ldots
 \]
 \[
 U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)
 \]
Discounting Rewards

- Discount rewards by \(\gamma < 1 \) each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

\[
U([r_0, \ldots, r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)
\]
Next Time

- Using utility to find the optimal policy

To do

- Read chapters 13 and 17