Adversarial Search: Expectimax and Expectiminimax
Where we have been and where we are headed

- **Blind Search**
 - DFS, BFS, IDS

- **Informed Search**
 - Systematic: Uniform cost, greedy best first, A*, IDA*
 - Stochastic: Hill climbing, simulated annealing, GAs

- **Adversarial Search**
 - Mini-max
 - Alpha-beta pruning
 - Evaluation functions for cut off search
 - Expectimax & Expectiminimax
Modeling the Opponent

- So far assumed
 \[\text{Opponent} = \text{rational, optimal (always picks MIN values)}\]

- What if
 \[\text{Opponent} = \text{random? (picks action randomly)}\]

2 player w/ random opponent = 1 player stochastic
Stochastic Single-Player

- Don’t know what the result of an action will be. E.g.,
 - In backgammon, don’t know result of dice throw; In solitaire, card shuffle is unknown; in minesweeper, mine locations are unknown
 - In Pac-Man, suppose the ghosts behave randomly
Game Tree for Stochastic Single-Player Game

- Game tree has
 - MAX nodes as before
 - Chance nodes: Environment selects an action with some probability

```
MAX

Chance

1/2 1/2 1/2 1/2
20 2 6 4
```
Should we use Minimax Search?

- Minimax strategy: Pick MIN value move at each chance node
- Which move (action) would MAX choose?
- MAX would always choose A_2
 - Average utility = $6/2 + 4/2 = 5$
- If MAX had chosen A_1
 - Average utility = 11
Expectimax Search

- **Expectimax search:**
 Chance nodes take average (expectation) of value of children

- **MAX picks move with maximum expected value**
Maximizing Expected Utility

- **Principle of maximum expected utility**: An agent should choose the action which maximizes its expected utility, given its knowledge.
 - General principle for decision making
 - Often taken as the definition of *rationality*
 - *We will see this idea over and over in this course!*

- Let’s decompress this definition…
A random variable represents an event whose outcome is unknown

Example:

Random variable $T =$ Traffic on freeway?

Outcomes (or values) for T: {none, light, heavy}

A probability distribution is an assignment of weights to outcomes

Example: $P(T=\text{none}) = 0.25$, $P(T=\text{light}) = 0.55$, $P(T=\text{heavy}) = 0.20$
Review of Probability

- Laws of probability (more later):
 - Probabilities are always in \([0, 1]\)
 - Probabilities (over all possible outcomes) sum to one

- As we get more evidence, probabilities may change:
 - \(P(T=\text{heavy}) = 0.20\)
 - \(P(T=\text{heavy} \mid \text{Hour=8am}) = 0.60\)
 - We’ll talk about conditional probabilities, methods for reasoning, and updating probabilities later
What are Probabilities?

- **Objectivist / frequentist answer:**
 Probability = average over repeated experiments
 - Examples:
 - Flip a coin 100 times; if 55 heads, 45 tails,
 \[P(\text{heads}) = 0.55 \text{ and } P(\text{tails}) = 0.45 \]
 - \(P(\text{rain}) \) for Seattle from historical observation
 - PacMan’s estimate of what the ghost will do based on what it has done in the past
 - \(P(10\% \text{ of class will get an A}) \) based on past classes
 - \(P(100\% \text{ of class will get an A}) \) based on past classes
What are Probabilities?

- **Subjectivist / Bayesian answer:**

 Degrees of belief about unobserved variables
 - E.g. An agent’s belief that it’s raining based on what it has observed
 - E.g. PacMan’s belief that the ghost will turn left, given the state
 - Your belief that a politician is lying
 - Often agents can *learn* probabilities from past experiences (more later)
 - New evidence *updates beliefs* (more later)
Uncertainty Everywhere

- Not just for games of chance!
 - Robot rotated wheel three times, how far did it advance?
 - Tooth hurts: have cavity?
 - At 45th and the Ave: Safe to cross street?
 - Got up late: Will you make it to class?
 - Didn’t get coffee: Will you stay awake in class?
 - Email subject line says “I have a crush on you”: Is it spam?
Where does uncertainty come from?

- **Sources of uncertainty in random variables:**
 - Inherently random processes (dice, coin, etc.)
 - Incomplete knowledge of the world
 - Ignorance of underlying processes
 - Unmodeled variables
 - Insufficient or ambiguous evidence, e.g., 3D to 2D image in vision
Expectations

- We can define a function $f(X)$ of a random variable X

- The expected value of a function is its average value under the probability distribution over the function’s inputs

$$E(f(X)) = \sum_x f(X = x)P(X = x)$$
Example: How long to drive to the airport?

- Driving time (in mins) as a function of traffic T:
 \[D(T=\text{none}) = 20, \quad D(T=\text{light}) = 30, \quad D(T=\text{heavy}) = 60 \]

What is your expected driving time?

- Recall: \(P(T) = \{\text{none: 0.25, light: 0.5, heavy: 0.25}\} \)
- \[E[D(T)] = D(\text{none}) \times P(\text{none}) + D(\text{light}) \times P(\text{light}) + D(\text{heavy}) \times P(\text{heavy}) \]
- \[E[D(T)] = (20 \times 0.25) + (30 \times 0.5) + (60 \times 0.25) = 35 \text{ mins} \]
Example 2

Example: Expected value of a fair die roll

<table>
<thead>
<tr>
<th>X</th>
<th>P</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
<td>6</td>
</tr>
</tbody>
</table>

\[
1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5
\]
Utilities

- Utilities are *functions* from states of the world to real numbers that describe an agent’s preferences.

- Where do utilities come from?
 - In a game, may be simple (+1/0/-1 for win/tie/loss)
 - Utilities summarize the agent’s goals

- In general, we hard-wire utilities and choose actions to maximize *expected utility*
Back to Expectimax

Expectimax search
- Chance nodes have uncertain outcomes
- Take average (expectation) of value of children to get expected utility or value
- Max nodes as in minimax search but choose action with max expected utility

Later, we’ll formalize the underlying problem as a Markov Decision Process
In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state:

- Node for every outcome out of our control: opponent or environment
- Model can be a simple uniform distribution (e.g., roll a die: 1/6)
- Model can be sophisticated and require a great deal of computation
 - The model might even say that adversarial actions are more likely! E.g., Ghosts in PacMan
def value(s):
 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

def maxValue(s):
 values = [value(s') for s' in successors(s)]
 return max(values)

def expValue(s):
 values = [value(s') for s' in successors(s)]
 weights = [probability(s, s') for s' in successors(s)]
 return expectation(values, weights)
Minimax versus Expectimax

PacMan with ghosts moving randomly

3 ply look ahead

Minimax: Video

Forgettaboutit...
Minimax versus Expectimax

PacMan with ghosts moving randomly

3 ply look ahead

Expectimax: Video

Wins some of the time
Expectimax for Pacman

- Ghosts not trying to minimize PacMan’s score but moving at random
- They are a part of the environment
- Pacman has a belief (distribution) over how they will act
What about Evaluation Functions for Limited Depth Expectimax?

- Evaluation functions quickly return an estimate for a node’s true value
- For minimax, *evaluation function scale* doesn’t matter
 - We just want better states to have higher evaluations (using MIN/MAX, so just get the relative value right)
 - We call this *insensitivity to monotonic transformations*
- For expectimax, *magnitudes* matter!
Extending Expectimax to Stochastic Two Player Games

White has just rolled 6-5 and has 4 legal moves.
Expectiminimax Search

• In addition to MIN- and MAX nodes, we have chance nodes (e.g., for rolling dice)

• Chance nodes take expectations, otherwise like minimax
Expectiminimax Search

if $state$ is a MAX node then
 return the highest $\text{EXPECTIMINIMAX-VALUE}$ of $\text{SUCCESSORS}(state)$
if $state$ is a MIN node then
 return the lowest $\text{EXPECTIMINIMAX-VALUE}$ of $\text{SUCCESSORS}(state)$
if $state$ is a chance node then
 return average of $\text{EXPECTIMINIMAX-VALUE}$ of $\text{SUCCESSORS}(state)$

Search costs increase: Instead of $O(b^d)$, we get $O((bn)^d)$, where n is the number of chance outcomes
Example: TDGammon program

TDGammon uses depth-2 search + very good eval function + reinforcement learning (playing against itself!)
→ world-champion level play
Summary of Game Tree Search

• Basic idea: Minimax
 • Too slow for most games

• Alpha-Beta pruning can increase max depth by factor up to 2

• Limited depth search necessary for most games

• Static evaluation functions necessary for limited depth search; opening game and end game databases can help

• Computers can beat humans in some games (checkers, chess, othello) but not yet in others (Go)

• Expectimax and Expectiminimax allow search in stochastic games
To Do

- Finish Project #1: Due Sunday before midnight
- Finish Chapter 5; Read Chapter 7