Local search algorithms

- What if \textit{path} to goal is irrelevant? Only interested in \textit{finding} the goal state!

E.g., N-queens: Put \(N\) queens on an \(N \times N\) board with no two queens on the same row, column, or diagonal.

\begin{itemize}
 \item \textbf{Initial State}
 \begin{tabular}{cccc}
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \end{tabular}
\end{itemize}

\begin{itemize}
 \item \textbf{Goal State}
 \begin{tabular}{cccc}
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
 \end{tabular}
\end{itemize}
Local Search

Not so good

• Local search algorithms: Keep only a single "current" state and try to improve it
 - Advantage: Very little memory required
 - Also works in infinite (continuous) state spaces

Hill-climbing search

"Like climbing Mt. Rainier in thick fog with amnesia"

function HILL-CLIMBING(problem) returns a state that is a local maximum
 inputs: problem, a problem
 local variables: current, a node
 neighbor, a node
 current ← MAKE-NODE(INITIAL-STATE[problem])
 loop do
 neighbor ← a highest-valued successor of current
 if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
 current ← neighbor
Hill-climbing search

Problem: depending on initial state, can get stuck in a local maximum

Hill Climbing Example: 8-queens problem

Objective function h?

- $h = $ number of pairs of queens that are attacking each other, either directly or indirectly
- Want to minimize h

Here, $h = 17$

Numbers denote h-values for available moves

Here, $h = 17$
Queens attacking each other? Most uncivilized. I prefer tea and crumpets.

Example: 8-queens problem

- A local minimum with $h = 1$. Need $h = 0$
- In general, how to find a global minimum or maximum?
Simulated Annealing

• Idea: escape local maxima by allowing some “downhill” moves but gradually decrease their frequency

```
function SIMULATED-ANNEALING( problem, schedule ) returns a solution state
inputs: problem, a problem
         schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                T, a "temperature" controlling prob. of downward steps

current← Make-Node(Initial-State[problem])
for i← 1 to ∞ do
  T← schedule[i]
  if T = 0 then return current
  next← a randomly selected successor of current
  ΔE← VALUE[next] - VALUE[current]
  if ΔE > 0 then current← next
  else current← next only with probability exp(ΔE/T)
```

• Select random next
• Move to it for sure if it has higher value
• Otherwise move to it with some probability

Why “annealing”?

http://www.kumarsteels.in/process.htm
Properties of simulated annealing

- One can prove: If T decreases slowly enough, then simulated annealing will find a global optimum with probability approaching 1.
- Simulated annealing is widely used for optimizing VLSI layout, airline scheduling, etc.

Instead of just one state, what if we keep multiple states (as we did in colonial times)?
Local Beam Search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, generate all the successors of all k states
- If any one is a goal state, stop;
- Else select the k best successors from the complete list and repeat.

Hey, perhaps sex can improve search?
Sure, venerable lady – check out my yonder book.

Genetic Algorithms

- Key idea: A successor state is generated by combining two parent states
- Start with k randomly generated states (a population of states)
 - A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluate strings using a fitness function: higher values for better states
- Produce the next generation of states by selection, crossover, and mutation
Example: Evolving 8 Queens

• Need a “fitness function”: how “fit” or desirable (i.e., close to the solution) is a string
• Example: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
One iteration of Genetic algorithm

<table>
<thead>
<tr>
<th>Initial</th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>24748552</td>
<td>24 31%</td>
</tr>
<tr>
<td>32752411</td>
<td>23 29%</td>
</tr>
<tr>
<td>24415124</td>
<td>20 26%</td>
</tr>
<tr>
<td>32543213</td>
<td>11 14%</td>
</tr>
</tbody>
</table>

Fitness:
24/(24+23+20+11) = 31% probability of selection for reproduction
23/(24+23+20+11) = 29% etc.

Queens crossing over

Crossover: What’s happening with the strings

32752411 → 32748552

24748552

What’s happening on the board
Enough about queens, let's talk about competitive games!

Adversarial Search

- Programs that can play competitive board games
- Minimax search

Board games?? Not my cup of tea!
Games Overview

<table>
<thead>
<tr>
<th>Perfect Information (fully observable)</th>
<th>Deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
<td></td>
</tr>
<tr>
<td>battleships</td>
<td>poker, bridge, scrabble</td>
<td></td>
</tr>
</tbody>
</table>

Imperfect Information (partially observable)

Games & Game Theory

- When there is *more than one agent*, the future is not easily predictable anymore for the agent.

- In *competitive* environments (conflicting goals), adversarial search becomes necessary.

- Class of games well-studied in AI:
 - board games, which can be characterized as *deterministic, turn-taking, two-player, zero-sum* games with *perfect information*.
Games as Search

- **Components:**
 - **States:**
 - **Initial state:**
 - **Successor function:**
 - **Terminal test:**
 - **Utility function:**

Games as Search

- **Components:**
 - **States:** board configurations
 - **Initial state:** the board position and which player will move
 - **Successor function:** returns list of \((move, state)\) pairs, each indicating a legal move and the resulting state
 - **Terminal test:** determines if the game is over
 - **Utility function:** gives a numeric value to terminal states (e.g., -1, 0, +1 in chess for loss, tie, win)
Games as Search

Convention: first player is MAX, 2nd player is MIN

• MAX moves first and they take turns until the game is over
• Winner gets reward, loser gets penalty
• Utility values are from MAX’s perspective
• Initial state + legal moves define the game tree
• MAX uses game tree to determine next move

Game Tree for Tic-Tac-Toe
Optimal Strategy: Minimax Search

- Find the best move for MAX assuming MIN also chooses its best move
- Given game tree, optimal strategy determined by computing the minimax value of each node:

\[
\text{MINIMAX-VALUE}(n) =
\begin{cases}
\text{UTILITY}(n) & \text{if } n \text{ is a terminal} \\
\max_{s \in \text{succ}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a MAX node} \\
\min_{s \in \text{succ}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a MIN node}
\end{cases}
\]
Two-Ply Game Tree

Minimax decision = \(A_1 \)
Next Time

- Alpha-beta pruning
- Heuristic evaluation functions
- Rolling the dice

You will find all the heuristic functions you need in my book!