Last Time: A* Search

- Use an evaluation function $f(n)$ for node n.
 - $f(n) = \text{estimated total cost of path thru } n \text{ to goal}$
- $f(n) = g(n) + h(n)$
 - $g(n) = \text{cost so far to reach } n$
 - $h(n) = \text{estimated cost from } n \text{ to goal}$
- Always choose the node from frontier that has the lowest f value.
 - Frontier = priority queue

Problem: Search for shortest path from start to goal
Admissible Heuristics

• A heuristic $h(n)$ is **admissible** if for every node n,
 \[
 h(n) \leq h^*(n)
 \]
 where $h^*(n)$ is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the goal

Admissible Heuristics

• Is the Straight Line Distance heuristic $h_{SLD}(n)$ **admissible**?
 • Yes, it never overestimates the actual road distance

 • *Theorem*: If $h(n)$ is admissible, A^* using TREE-SEARCH is optimal.
Optimality of A^* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

$$f(G) = g(G) \quad \text{since } h(G) = 0$$

$$f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0$$

$$g(G) < g(G_2) \quad \text{since } G_2 \text{ is suboptimal}$$

$$f(G) < f(G_2) \quad \text{from above}$$

Optimality of A^* (cont.)

$$f(G) < f(G_2) \quad \text{from prev slide}$$

$$h(n) \leq h^*(n) \quad \text{since } h \text{ is admissible}$$

$$g(n) + h(n) \leq g(n) + h^*(n) = f(G)$$

$$f(n) \leq f(G) < f(G_2)$$

Hence $f(n) < f(G_2) \Rightarrow A^*$ will select n and never G_2 for expansion.
Optimality of A* for Graph Search

• A heuristic $h(n)$ is consistent if
 for every node n and every successor n' generated
 by an action a,

 $h(n) \leq c(n,a,n') + h(n')$

 (general triangle inequality)

• Theorem: If $h(n)$ is consistent, A* using GRAPH-SEARCH
 is optimal.
 (see text for proof)

• Most admissible heuristics turn out to be consistent too
 E.g. SLD is a consistent heuristic for the route problem (prove it!)

Okay, enough theory... time to wake up!
Properties of A*

• Complete? Yes (unless there are infinitely many nodes with $f \leq f(G)$)

• Time? Exponential worst case but may be faster in many cases

• Space? Exponential: Keeps all generated nodes in memory (exponential # of nodes)

• Optimal? Yes

A* vs. Uniform Cost Search

• Both are optimal but differ in search strategy and time/space complexity

• A* uses $f(n) = g(n) + h(n)$ to find shortest path to a single goal

• Uniform cost search uses $f(n) = g(n)$ to find shortest path to a single goal
A* vs. Uniform Cost Search

• A* expands mainly toward the goal with the help of the heuristic function

• Uniform-cost expands uniformly in all directions

• A* can be more efficient (i.e., expands fewer nodes) if the heuristic is good

Uniform Cost Pac-Man
Let's explore heuristic functions

For the 8-puzzle (get to goal state with smallest # of moves), what are some heuristic functions?

• $h_1(n) = ?$
• $h_2(n) = ?$
Example heuristic functions

Examples:
• \(h_1(n) \) = number of misplaced tiles
• \(h_2(n) \) = total Manhattan distance (no. of squares from desired location of each tile)

\[h_1(S) = ? \]
\[h_2(S) = ? \]

Example heuristics

Examples:
• \(h_1(n) \) = number of misplaced tiles
• \(h_2(n) \) = total Manhattan distance (no. of squares from desired location of each tile)

\[h_1(S) = 8 \]
\[h_2(S) = 3 + 1 + 2 + 2 + 2 + 3 + 2 = 18 \]

• Are these admissible heuristics?
Dominance

• If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible) then \(h_2 \) dominates \(h_1 \)

• \(h_2 \) is better for search (why?)

 Getting closer to the actual cost to goal

• Does one dominate the other for:

 \(h_1(n) = \) number of misplaced tiles

 \(h_2(n) = \) total Manhattan distance

Dominance

• For 8-puzzle heuristics \(h_1 \) and \(h_2 \), typical search costs (average number of nodes expanded for solution depth \(d \)):

 • \(d=12 \)

 IDS = 3,644,035 nodes

 \(A^*(h_1) = 227 \) nodes

 \(A^*(h_2) = 73 \) nodes

 • \(d=24 \)

 IDS = too many nodes to fit in memory

 \(A^*(h_1) = 39,135 \) nodes

 \(A^*(h_2) = 1,641 \) nodes
For many problems, A* can still require too much memory

Iterative-Deepening A* (IDA*)
- Less memory required compared to A*
- Like iterative-deepening search, but...
- Depth bound modified to be an f-limit

 Start with $\text{limit} = h(\text{start})$

 Prune any node if $f(\text{node}) > f$-limit

 Next f-limit=min-cost of any node pruned
That’s cool yo but howdya derive ‘em heuristic functions?

Just relax, bro!

Relaxed Problems

- Derive admissible heuristic from **exact** cost of a solution to a **relaxed** version of problem

 For route planning, what is a relaxed problem?

 Relax requirement that car has to stay on road
 \[\rightarrow \text{Straight Line Distance becomes optimal cost} \]

- Cost of optimal soln to relaxed problem \(\leq \) cost of optimal soln for real problem
Heuristics for eight puzzle

Original: Tile can move from location A to B if A is horizontally or vertically next to B and B is blank

Relaxed 1: Tile can move from any loc A to any loc B
Cost = $h_1 = \text{number of misplaced tiles}$

Relaxed 2: Tile can move from loc A to loc B if A is horizontally or vertically next to B
Cost = $h_2 = \text{total Manhattan distance}$
Need for Better Heuristics

Performance of h_2 (Manhattan Distance Heuristic)
- 8 Puzzle: < 1 second
- 15 Puzzle: 1 minute
- 24 Puzzle: 65000 years

Can we do better?

Creating New Heuristics

- Given admissible heuristics h_1, h_2, ..., h_m, none of them dominating any other, how to choose the best?

- Answer: No need to choose only one! Use:
 $$h(n) = \max \{h_1(n), h_2(n), ..., h_n(n)\}$$
 - h is admissible (prove it!)
 - h dominates each individual h_i (by construction)
Pattern Databases [Culberson & Schaeffer 1996]

- **Idea:** Use solution cost of a subproblem as heuristic.
- **For 8-puzzle:** pick any subset of tiles
 - E.g., 3 tiles
- **Precompute a table**
 Compute optimal cost of solving just these tiles
 - This is a lower bound on actual cost with all tiles
 Search backwards from goal and record cost of each new pattern encountered
 - State = position of just these tiles & blank
- **Admissible heuristic** h_{DB} for complete state
 = cost of corresponding sub-problem state in database

Combining Multiple Databases

- **Repeat for another subset of tiles**
 Precompute multiple tables
- **How to combine table values?**
 Use the \max trick!

- **E.g. Optimal solutions to Rubik’s cube**
 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (diff subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with $574,000$ years for IDS
Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values
 • But not exceed the actual solution cost (admissible)
 • How?

Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table
 Don’t count moves of tiles not in set
 • This makes sure costs are disjoint
 • Can be added without overestimating!
 • E.g. 8 tile DB has 519 million entries
 • And 7 tile DB has 58 million

• During search
 Look up costs for each set in DB
 Add values to get heuristic function value

Manhattan distance is a special case of this idea
where each set is a single tile
Performance of Disjoint PDBs

• **15 Puzzle:** 2000x speedup vs Manhattan dist
 IDA* with the two DBs solves 15 Puzzle optimally in 30 milliseconds

• **24 Puzzle:** 12 millionx speedup vs Manhattan
 - IDA* can solve random instances in 2 days
 - Uses DBs for 4 disjoint sets as shown
 - Each DB has 128 million entries
 - Without PDBs: 65,000 years

Next Time

• Local search
• Gaming search and searching for Games
• To do: Project #1, Read Sec. 4.1, Chap. 5