Lecture 4

Informed Search

Last Time

Blind (Uninformed) Search

Tree Search and Graph Search

BFS
UC-BFS
DFS
Depth-first search

Expand deepest unexpanded node

Implementation:

\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \text{LIFO queue}, \) i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \text{LIFO queue}, \) i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

$fringe =$ LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:
\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete??
No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path (using "explored" set)
 ⇒ complete in finite spaces

Time??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (using “explored” set)
⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

Optimal??
Properties of depth-first search

- **Complete??** No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path (using “explored” set)
 - ⇒ complete in finite spaces

- **Time??** $O(b^m)$: terrible if m is much larger than d
 - but if solutions are dense, may be much faster than breadth-first

- **Space??** $O(bm)$, i.e., linear space!

- **Optimal??** No

Space cost is a big advantage of DFS over BFS. Example: $b = 10$ with 1000 Bytes/node
$d = 16$ ⇒ 156 KB instead of 10 EB (1 billion GB)

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors (can handle infinite state spaces)

Recursive implementation:

```
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
    RECURSIVE-DLS(Make-Node(Initial-State[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? ← false
    if GOAL-TEST[problem](State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else for each successor in EXPAND(node, problem) do
        result ← RECURSIVE-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? ← true
        else if result ≠ failure then return result
    if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

function \textsc{Iterative-Deepening-Search}(\textit{problem}) returns a solution
inputs: \textit{problem}, a problem
 for \textit{depth} ← 0 to ∞ do
 \textit{result} ← \textsc{Depth-Limited-Search}(\textit{problem}, \textit{depth})
 if \textit{result} ≠ cutoff then return \textit{result}
 end

- DFS with increasing depth limit
- Finds the best depth limit
- Combines the benefits of DFS and BFS

Iterative deepening search \(l = 0 \)
Iterative deepening search $l = 1$

Iterative deepening search $l = 2$
Iterative deepening search $l = 3$

Properties of iterative deepening search

Complete??
Properties of iterative deepening search

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Yes</td>
</tr>
<tr>
<td>Time?</td>
<td>$db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$</td>
</tr>
<tr>
<td>Space?</td>
<td></td>
</tr>
</tbody>
</table>
Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.17)

Properties of iterative deepening search

Complete??	Yes
Time??	$db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$
Space??	$O(bd)$
Optimal??	Yes if all step costs are equal. Not optimal in general. Can be modified to explore uniform-cost tree. Increasing path-cost limits instead of depth limits. This is called Iterative lengthening search (exercise 3.17)
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^d)</td>
<td>(b^{C*/c})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d'})</td>
<td>(b^{C*/c})</td>
<td>(b_m)</td>
<td>(b_l)</td>
<td>(b_d)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Bidirectional Search

Motivation: Search time $b^{d/2} + b^{d/2} \ll b^d$
(E.g., $10^8 + 10^8 = 2 \cdot 10^8 \ll 10^{16}$)
Can use breadth-first search or uniform-cost search
Hard for implicit goals e.g., goal = “checkmate” in chess

Can we do better?

Can we use problem-specific knowledge to speed up search and maintain optimality?
Informed Search

- General search problem: Actions have different costs
 - Want to minimize total cost from start to goal
 - Not just minimizing path cost like Uniform-cost search
 - Idea: Use problem-specific knowledge to guide search by using “heuristic function”

Best-first Search

- Generalization of breadth first search
- Priority queue of nodes to be explored
- Evaluation function $f(n)$ used for each node

Insert initial state into priority queue
While queue not empty
 - Node = head(queue)
 - If goal(node) then return node
 - Insert children of node into pr. queue
Who’s on (best) first?

Examples of best-first search:

• **Breadth-first search is best-first**
 With \(f(n) = \text{depth}(n) \)

• **Uniform-cost search is best-first**
 With \(f(n) = g(n) \)
 where \(g(n) = \text{path cost (sum of edge costs from start to } n) \)

Greedy best-first search

• Use a **heuristic** evaluation function \(f(n) = h(n) = \text{estimate of cost from } n \text{ to goal} \)

• E.g., \(h_{\text{SLD}}(n) = \text{straight-line distance from } n \text{ to destination} \)
• Greedy best-first search expands the node that appears to be closest to goal
Example: Lost in Romania

\[h(n) = \text{SLD to Bucharest} \]

- Arad 366
- Bucharest 0
- Craiova 160
- Dobrota 242
- Eforie 161
- Fagaras 176
- Giurgiu 77
- Hirsova 151
- Iasi 226
- Lurgj 244
- Mehadia 241
- Neamt 234
- Oradea 380
- Pitești 100
- Rimniciu Vâlcea 193
- Sibiu 253
- Timișoara 329
- Urziceni 80
- Vaslui 199
- Zerind 374

Example: Greedily Searching for Bucharest

\[h_{SLD}(Arad) \]
Example: Greedily Searching for Bucharest
Example: Greedily Searching for Bucharest

Yellow = greedy SLD-based search is NOT optimal!
Blue = optimal (418 versus 450)
Properties of Greedy Best-First Search

• **Complete?** No – can get stuck in loops (unless we keep an “explored” set)

• **Time?** $O(b^m)$, but a good heuristic can give dramatic improvement

• **Space?** $O(b^m)$ (nodes in priority queue + explored set)

• **Optimal?** No, as our example illustrated

A* Search
(Hart, Nilsson & Rafael 1968)

Best first search with $f(n) = g(n) + h(n)$

$g(n) =$ sum of edge costs from **start to n**

heuristic function $h(n) =$ estimate of lowest cost path from **n to goal**

If $h(n)$ is “**admissible**” then tree-search will be optimal

{ **Underestimates cost of any solution which can be reached from node e.g.,** $h_{SLD}(n)$ }
Back in Romania Again

Aici vom merge din nou!

A* Example

h(n)= SLD to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobrota 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitești 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

f(n)=g(n)+h(n)

Arad
366=0+366
A* Example
A* Example

Next Time

• More on A* and heuristic functions

To Do:
• Read Chapter 3
• Start Project #1