Probabilistic Models - Outline

- Bayesian Networks (BNs)
- Independence
- Efficient Inference in BNs
 - Variable Elimination
 - Direct Sampling
 - Markov Chain Monte Carlo (MCMC)
- Learning

Bayes’ Nets: Big Picture

- Problems with using full joint distribution:
 - Unless very few variables, the joint is WAY too big
 - Unless very few variables, hard to learn (estimate empirically)

- Bayesian networks: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - A kind of “graphical model”
 - We describe how random variables interact, locally
 - Local interactions chain together to give global distribution

Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[
 P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))
 \]
 - This lets us reconstruct any entry of the full joint
 - Not every BN can represent every joint distribution
 - The topology enforces certain independence assumptions
 - Compare to the exact decomposition according to the chain rule!
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:
 X --- Y --- Z
 - Question: are X and Z independent?
 - Answer: no.
 - Example: low pressure causes rain, which causes traffic.
 - Knowledge about X may change belief in Z,
 - Knowledge about Z may change belief in X (via Y)
 - Addendum: they could be independent: how?

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars [Z]?
 - Yes, if X and Y "separated" by Z
 - No active paths = independence
 - A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure) A → B ← C where B or one of its descendents is observed
 - All it takes to block a path is a single inactive segment

Example

- Variables:
 - R: Raining
 - W: Wet
 - P: Plants growing
 - T: Traffic bad
 - D: Roof drips
 - S: I'm sad
- Questions:
 - W ⊥ D

Example

- Variables:
 - R: Raining
 - W: Wet
 - P: Plants growing
 - T: Traffic bad
 - D: Roof drips
 - S: I'm sad
- Questions:
 - W ⊥ D
 - P ⊥ D | R, S

Example

- Variables:
 - R: Raining
 - W: Wet
 - P: Plants growing
 - T: Traffic bad
 - D: Roof drips
 - S: I'm sad
- Questions:
 - W ⊥ D
 - P ⊥ D | R, S

Example

Given Markov Blanket, X is Independent of All Other Nodes

\[MB(X) = \text{Par}(X) \cup \text{Childs}(X) \cup \text{Par(Childs)(X)} \]
Given Markov Blanket, X is Independent of All Other Nodes

\[\text{MB}(X) = \text{Par}(X) \cup \text{Childs}(X) \cup \text{Par}(\text{Childs}(X)) \]

Inference in BNs

- The graphical independence representation
- yields efficient inference schemes
- We generally want to compute
 - Marginal probability: \(\Pr(Z) \),
 - \(\Pr(Z|E) \) where \(E \) is (conjunctive) evidence
 - \(Z \): query variable(s),
 - \(E \): evidence variable(s)
 - everything else: hidden variable
- Computations organized by network topology

P(B | J=true, M=true)

\[
P(b|j,m) = \alpha \sum_e \sum_a P(b,j,m,e,a)
\]

Variable Elimination

\[
P(b|j,m) = \alpha P(b) \sum_e \sum_a P(a|b,e)P(j|a)P(m|a)
\]

Approximate Inference in Bayes Nets
Sampling based methods

(Based on slides by Jack Breese and Daphne Koller)
Bayes Net is a generative model
- We can easily generate samples from the distribution represented by the Bayes net
- Generate one variable at a time in topological order

Use the samples to compute marginal probabilities, say $\Pr(c)$
Stochastic simulation $P(B|C)$

Samples:

$B E A C N$

$b e a c$

$P(b) = 0.03$

$P(B|C) = 0.04$

$P(a) = 0.08$

$P(c) = 0.05$

$P(e) = 0.08$

$P(n) = 0.30$

$P(e) = 0.06$

$P(n) = 0.30$
Rejection Sampling

- Sample from the prior
 - reject if do not match the evidence

- Returns consistent posterior estimates

- Hopelessly expensive if P(e) is small
 - P(e) drops off exponentially with no. of evidence vars
Likelihood Weighting

- Idea:
 - fix evidence variables
 - sample only non-evidence variables
 - weight each sample by the likelihood of evidence
Likelihood weighting $P(B|C)$

- Sampling probability: $S(z,e) =$
 - Neither prior nor posterior
 - Wt for a sample $<z,e>$: $w(z,e) = \prod_i P(c_i | Parents(Z_i))$
 - Weighted Sampling probability $S(z,e)w(z,e)$
 $$ = \prod_i P(z_i | Parents(Z_i)) \prod_i P(c_i | Parents(E_i))$$
 $$ = P(z,e)$$
 - returns consistent estimates
 - performance degrades w/ many evidence vars
 • but a few samples have nearly all the total weight
 • late occurring evidence vars do not guide sample generation

- $P(B|C)$
 - $P(B|C)_{\text{Alarm}}$
 - $P(B|C)_{\text{Newscast}}$

- Samples:
 - $B E A C N$
 - $b e a c n$
MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:
 1. Pick a variable X
 2. Calculate \(P(X=\text{true} \mid \text{all other variables}) \)
 3. Set X to true with that probability
- Repeat many times. Frequency with which any variable X is true is its posterior probability.
- Converges to true posterior when frequencies stop changing significantly
 - stable distribution, mixing

Markov Blanket Sampling

- How to calculate \(P(X=\text{true} \mid \text{all other variables}) \)?
- Recall: a variable is independent of all others given its Markov Blanket
 - parents
 - children
 - other parents of children

- So problem becomes calculating \(P(X=\text{true} \mid \text{MB}(X)) \)
- We solve this sub-problem exactly
- Fortunately, it is easy to solve

 \[
 P(X) = \alpha P(X \mid \text{Parents}(X)) \prod_{\text{ForChildren}(X)} P(Y \mid \text{Parents}(Y))
 \]

Example

\[
\begin{align*}
P(X) &= \alpha P(X \mid \text{Parents}(X)) \prod_{\text{ForChildren}(X)} P(Y \mid \text{Parents}(Y)) \\
&= P(A \mid B, C) P(B \mid X, C) P(A) P(C) \\
&= \alpha P(X \mid A) P(B \mid X, C)
\end{align*}
\]
Example

- Evidence: s, b
- Randomly set: h, b

Evidence: s, b
Randomly set: h, g
Sample H using P(H|s,g,b)

Suppose result is ~h
Sample G using P(G|s,~h,b)

Suppose result is g
Sample G using P(G|s,~h,b)
Example

- **Heart Disease**
 - Evidence: s, b
 - Randomly set: ~h, g
 - Sample H using $P(H|s,g,b)$
 - Suppose result is ~h
 - Sample G using $P(G|s,~h,b)$
 - Suppose result is g
 - Sample G using $P(G|s,~h,b)$

- **Lung Disease**
 - Evidence: s, b
 - Randomly set: ~h, g
 - Sample H using $P(H|s,g,b)$
 - Suppose result is ~h
 - Sample G using $P(G|s,~h,b)$
 - Suppose result is g
 - Sample G using $P(G|s,~h,b)$

Gibbs MCMC Summary

$$P(X|E) = \frac{\text{number of samples with } X=x}{\text{total number of samples}}$$

- **Advantages:**
 - No samples are discarded
 - No problem with samples of low weight
 - Can be implemented very efficiently
 - 10K samples @ second
- **Disadvantages:**
 - Can get stuck if relationship between vars is deterministic
 - Many variations devised to make MCMC more robust

Other inference methods

- **Exact inference**
 - Junction tree

- **Approximate inference**
 - Belief Propagation
 - Variational Methods