CSE-473 Artificial Intelligence

Partially-Observable MDPS (POMDPs)

Classical Planning
- Static
- Predictable
- Environment
- Fully Observable
- Perfect
- Discrete
- Deterministic

Classical Planning
- Environment
- What action
- Percepts
- Actions
- Percepts
- Actions

Stochastic Planning
- (MDPs, Reinforcement Learning)
- Static
- Unpredictable
- Environment
- Fully Observable
- Perfect
- Stochastic

Stochastic Planning
- Environment
- What action
- Percepts
- Actions
- Percepts
- Actions

Partially-Observable MDPs
- Environment
- Partially Observable
- Noisy
- Discrete
- Stochastic

Partially-Observable MDPs
- Environment
- What action
- Percepts
- Actions
- Percepts
- Actions

Markov Decision Process (MDP)
- \(S \): set of states
- \(A \): set of actions
- \(P(s'|s,a) \): transition model
- \(R(s,a,s') \): reward model
- \(\gamma \): discount factor
- \(s_0 \): start state

Objective of a Fully Observable MDP
- Find a policy \(\pi: S \rightarrow A \)
- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming full observability
Partially- Observable MDP

- \(S \): set of states
- \(A \): set of actions
- \(\Pr(s'|s,a) \): transition model
- \(R(s,a,s') \): reward model
- \(\gamma \): discount factor
- \(s_0 \): start state
- \(E \): set of possible evidence (observations)
- \(\Pr(e|s) \)

Objective of a POMDP

- Find a policy \(\pi \): \(\text{Belief States}(S) \rightarrow A \)
 - A belief state is a probability distribution over states
- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming full observability

Classical Planning

- World deterministic
- State observable

MDP-Style Planning

- Policy
- World stochastic
- State observable

Stochastic, Partially Observable

- State of agent's mind
- Not just of world

Belief State

- Note: Distribution: sum of probabilities = 1
For now, assume movement is deterministic.

Evidence Model
- \(S = \{s_{swb}, s_{seb}, s_{swm}, s_{sem}, s_{swul}, s_{seul}, s_{swur}, s_{seur}\} \)
- \(E = \{heat\} \)
- \(\Pr(e|s) = \)
 - \(\Pr(heat | s_{seb}) = 1.0 \)
 - \(\Pr(heat | s_{swb}) = 0.2 \)
 - \(\Pr(heat | s_{other}) = 0.0 \)

POMDPs
- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let \(b \) be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

\[
V_T(b) = \max_u \left[r(b, u) + \gamma \sum_{b'} V_{T-1}(b') \Pr(b' | u, b) \right]
\]

Problems
- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is problematic, since probability distributions are continuous.
- How many belief states are there?
- For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.
An Illustrative Example

The Parameters of the Example
- The actions u_1 and u_2 are terminal actions.
- The action u_3 is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma = 1$.

Payoff in POMDPs
- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$ r(b, u) = \mathbb{E}_x[r(x, u)] = \int r(x, u)p(x) \, dx = p_1 r(x_1, u) + p_2 r(x_2, u) $$

Payoffs in Our Example (1)
- If we are totally certain that we are in state x_1 and execute action u_1, we receive a reward of -100.
- If, on the other hand, we definitely know that we are in x_2 and execute u_2, the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities:

$$ r(b, u_1) = -100 \cdot p_1 + 100 \cdot p_2 $$
$$ r(b, u_2) = 100 \cdot p_2 - 50 \cdot (1 - p_1) $$
$$ r(b, u_3) = -1 $$

Payoffs in Our Example (2)

The Resulting Policy for $T=1$
- Given we have a finite POMDP with $T=1$, we would use $V_1(b)$ to determine the optimal policy.
- In our example, the optimal policy for $T=1$ is:

$$ \pi_1(b) = \begin{cases}
 u_1 & \text{if } p_1 \leq \frac{3}{7} \\
 u_2 & \text{if } p_1 > \frac{3}{7}
\end{cases} $$
- This is the upper thick graph in the diagram.
Piecewise Linearity, Convexity

- The resulting value function $V_1(b)$ is the maximum of the three functions at each point
 \[V_1(b) = \max \ r(b, u) \]
 \[= \max \begin{cases} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \end{cases} \]
- It is piecewise linear and convex.

Pruning

- If we carefully consider $V_1(b)$, we see that only the first two components contribute.
- The third component can therefore safely be pruned away from $V_1(b)$.
 \[V_1(b) = \max \begin{cases} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \end{cases} \]

Payoffs in Our Example (2)

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z_1, we update the belief using Bayes rule.
 \[
 \begin{align*}
 p_1' &= \frac{0.7 \ p_1}{p(z_1)} \\
 p_2' &= \frac{0.3 \ (1 - p_1)}{p(z_1)} \\
 p(z_1) &= 0.7 \ p_1 + 0.3 \ (1 - p_1) = 0.4 \ p_1 + 0.3
 \end{align*}
 \]
Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1)=0.7$ and $p(z_1 | x_2)=0.3$.
- Given the observation z_1, we update the belief using Bayes rule.
- Thus $V_i(b | z_1)$ is given by

$$V_1(b | z_1) = \max \left\{ \frac{-100 \cdot 0.7 \cdot p(z_1 | x_1) + 100 \cdot 0.3 \cdot (1-p(z_1))}{p(z_1)}, \frac{100 \cdot 0.7 \cdot p(z_1 | x_1) - 50 \cdot 0.3 \cdot (1-p(z_1))}{p(z_1)} \right\}$$

$$= \frac{1}{p(z_1)} \max \left\{ -70 \cdot p_1 + 30 \cdot (1-p_1), 70 \cdot p_1 - 15 \cdot (1-p_1) \right\}$$

Expected Value after Measuring

- Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$V_i(b) = E[V_i(b | z)] = \sum_{i=1}^{2} p(z_i) V_i(b | z_i)$$

$$= \sum_{i=1}^{2} p(z_i) V_i(b | z_i)$$

$$= \sum_{i=1}^{2} V_i(b) p(z_i)$$

Resulting Value Function

- The four possible combinations yield the following function which then can be simplified and pruned.

$$V_i(b) = \max \left\{ \begin{array}{c} -70 \cdot p_1 + 30 \cdot (1-p_1), \ -30 \cdot p_1 + 70 \cdot (1-p_1), \ +70 \cdot p_1 - 15 \cdot (1-p_1), \ +30 \cdot p_1 - 35 \cdot (1-p_1), \ +70 \cdot p_1 - 15 \cdot (1-p_1), \ +30 \cdot p_1 - 35 \cdot (1-p_1), \ +100 \cdot p_1 + 100 \cdot (1-p_1), \ -100 \cdot p_1 + 100 \cdot (1-p_1), \ +40 \cdot p_1 + 55 \cdot (1-p_1), \ +100 \cdot p_1 - 50 \cdot (1-p_1) \end{array} \right\}$$

Value Function

- The four possible combinations yield the following function which then can be simplified and pruned.

$$V_i(b) = \max \left\{ \begin{array}{c} -70 \cdot p_1 + 30 \cdot (1-p_1), \ -30 \cdot p_1 + 70 \cdot (1-p_1), \ +70 \cdot p_1 - 15 \cdot (1-p_1), \ +30 \cdot p_1 - 35 \cdot (1-p_1), \ +70 \cdot p_1 - 15 \cdot (1-p_1), \ +30 \cdot p_1 - 35 \cdot (1-p_1), \ +100 \cdot p_1 + 100 \cdot (1-p_1), \ -100 \cdot p_1 + 100 \cdot (1-p_1), \ +40 \cdot p_1 + 55 \cdot (1-p_1), \ +100 \cdot p_1 - 50 \cdot (1-p_1) \end{array} \right\}$$

State Transitions (Prediction)

- When the agent selects u_3, its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$p_1 = E_{x_i}[p(x_1 | x, u_3)]$$

$$= \sum_{i=1}^{2} p(x_1 | x_i, u_3) p_{i_1}$$

$$= 0.2p_1 + 0.8(1-p_1)_{u_2}$$

$$= 0.8 - 0.6p_1$$
Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain:

$$
V_2(b) = \max \left\{ \begin{array}{c}
-70 p_1 + 30 (1 - p_1) - 30 p_1 - 70 (1 - p_1) \\
-70 p_1 + 30 (1 - p_1) + 30 p_1 - 35 (1 - p_1) \\
+70 p_1 - 15 (1 - p_1) - 30 p_1 + 70 (1 - p_1)
\end{array} \right.
= \max \left\{ \begin{array}{c}
-100 p_1 + 100 (1 - p_1) \\
+40 p_1 + 55 (1 - p_1) \\
+100 p_1 - 50 (1 - p_1)
\end{array} \right.
$$

$$
\bar{V}_1(b|u_3) = \max \left\{ \begin{array}{c}
60 p_1 - 60 (1 - p_1) \\
52 p_1 + 43 (1 - p_1) \\
-20 p_1 + 70 (1 - p_1)
\end{array} \right.
$$

Value Function after executing u_3

Value Function for $T=2$

- Taking into account that the agent can either directly perform u_1 or u_2 or first u_3 and then u_1 or u_2, we obtain (after pruning)

$$
\bar{V}_2(b) = \max \left\{ \begin{array}{c}
-100 p_1 + 100 (1 - p_1) \\
100 p_1 - 50 (1 - p_1) \\
51 p_1 - 42 (1 - p_1)
\end{array} \right.
$$

Graphical Representation of $V_2(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for $T=10$ and $T=20$ are

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an unpruned value function for $T=20$ includes more than $10^{547,864}$ linear functions.
- At $T=30$ we have $10^{551,012,337}$ linear functions.
- The pruned value functions at $T=20$, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.
POMDP Summary
- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.