Local Search and Optimization

Chapter 4

Mausam

(Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld...)

Outline

- Local search techniques and optimization
 - Hill-climbing
 - Gradient methods
 - Simulated annealing
 - Genetic algorithms
 - Issues with local search

Local search and optimization

- Previous lecture: path to goal is solution to problem
 - Systematic exploration of search space.
- This lecture: a state is solution to problem
 - For some problems path is irrelevant.
 - E.g., 8-queens
- Different algorithms can be used
 - Depth First Branch and Bound
 - Local search

Trivial Algorithms

- Random Sampling
 - Generate a state randomly
- Random Walk
 - Randomly pick a neighbor of the current state

Both algorithms asymptotically complete.
Hill-climbing (Greedy Local Search)

max version

function HILL-CLIMBING(problem) return a state that is a local maximum
input: problem, a problem
local variables: current, a node.
neighbor, a node.
current ← MAKE-NODE(INITIAL-STATE проблем)
loop do
neighbor ← a highest valued successor of current
if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
current ← neighbor
min version will reverse inequalities and look for lowest valued successor

Hill-climbing search

• “a loop that continuously moves towards increasing value”
 – terminates when a peak is reached
 – Aka greedy local search
• Value can be either
 – Objective function value
 – Heuristic function value (minimized)
• Hill climbing does not look ahead of the immediate neighbors
• Can randomly choose among the set of best successors
 – if multiple have the best value
• “climbing Mount Everest in a thick fog with amnesia”

“Landscape” of search

Hill Climbing gets stuck in local minima depending on?

Example: n-queens

• Put n queens on an n x n board with no two queens on the same row, column, or diagonal
• Is it a satisfaction problem or optimization?

Search Space

• State
 – All 8 queens on the board in some configuration
• Successor function
 – move a single queen to another square in the same column.
• Example of a heuristic function $h(n)$:
 – the number of pairs of queens that are attacking each other
 – (so we want to minimize this)
Hill-climbing search: 8-queens problem

Is this a solution?
What is h?

Hill-climbing on 8-queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it gets stuck at a local minimum

However...
- Takes only 4 steps on average when it succeeds
- And 3 on average when it gets stuck
- (for a state space with 8^8 =~17 million states)

Hill Climbing Drawbacks

- Local maxima
- Plateaus
- Diagonal ridges

Escaping Shoulders: Sideways Move

- If no downhill (uphill) moves, allow sideways moves in hope that algorithm can escape
 - Need to place a limit on the possible number of sideways moves to avoid infinite loops
- For 8-queens
 - Now allow sideways moves with a limit of 100
 - Raises percentage of problem instances solved from 14 to 94%
 - However...
 - 21 steps for every successful solution
 - 64 for each failure

Tabu Search

- prevent returning quickly to the same state
- Keep fixed length queue (“tabu list”)
- add most recent state to queue; drop oldest
- Never make the step that is currently tabu’ed

Properties:
 - As the size of the tabu list grows, hill-climbing will asymptotically become “non-redundant” (won’t look at the same state twice)
 - In practice, a reasonable sized tabu list (say 100 or so) improves the performance of hill climbing in many problems

Escaping Shoulders/local Optima Enforced Hill Climbing

- Perform breadth first search from a local optima
 - to find the next state with better h function

- Typically,
 - prolonged periods of exhaustive search
 - bridged by relatively quick periods of hill-climbing

- Middle ground b/w local and systematic search

© Mausam
Hill-climbing: stochastic variations

- **Stochastic hill-climbing**
 - Random selection among the uphill moves.
 - The selection probability can vary with the steepness of the uphill move.
- **To avoid getting stuck in local minima**
 - Random-walk hill-climbing
 - Random-restart hill-climbing
 - Hill-climbing with both

Hill Climbing: stochastic variations

- When the state-space landscape has local minima, any search that moves only in the greedy direction cannot be complete.
- Random walk, on the other hand, is asymptotically complete.

Idea: Put random walk into greedy hill-climbing.

Hill-climbing with random restarts

- If at first you don’t succeed, try, try again!
- Different variations
 - For each restart: run until termination vs. run for a fixed time
 - Run a fixed number of restarts or run indefinitely
- Analysis
 - Say each search has probability \(p \) of success
 - E.g., for 8-queens, \(p = 0.14 \) with no sideways moves
 - Expected number of restarts?
 - Expected number of steps taken?
- If you want to pick one local search algorithm, learn this one!!

Hill-climbing with random walk

- At each step do one of the two
 - Greedy: With prob \(p \) move to the neighbor with largest value
 - Random: With prob 1-p move to a random neighbor

Hill-climbing with both

- At each step do one of the three
 - Greedy: move to the neighbor with largest value
 - Random Walk: move to a random neighbor
 - Random Restart: Resample a new current state

Simulated Annealing

- Simulated Annealing = physics inspired twist on random walk
- Basic ideas:
 - like hill climbing identify the quality of the local improvements
 - instead of picking the best move, pick one randomly
 - say the change in objective function is \(\Delta \)
 - if \(\Delta \) is positive, then move to that state
 - otherwise:
 - move to this state with probability proportional to \(\Delta \)
 - thus, worse moves (very large negative \(\Delta \)) are executed less often
 - however, there is always a chance of escaping from local maxima
 - over time, make it less likely to accept locally bad moves
 - (Can also make the size of the move random as well, i.e., allow “large” steps in state space)

Physical Interpretation of Simulated Annealing

- A Physical Analogy:
 - imagine letting a ball roll downhill on the function surface
 - this is like hill-climbing (for minimization)
 - now imagine shaking the surface, while the ball rolls, gradually reducing the amount of shaking
 - this is like simulated annealing
- Annealing = physical process of cooling a liquid or metal until particles achieve a certain frozen crystal state
- simulated annealing:
 - free variables are like particles
 - seek “low energy” (high quality) configuration
 - slowly reducing temp. T with particles moving around randomly
Simulated annealing

function SIMULATED‐ANNEALING(\text{problem}, \text{schedule}) \quad \text{return} \quad \text{a solution state}

\text{input:} \text{problem}, \text{a problem}
\text{schedule}, \text{a mapping from time to temperature}

\text{local variables:} \text{current}, \text{a node.}
\text{next}, \text{a node.}
\text{T}, \text{a “temperature” controlling the prob. of downward steps}

current ← \text{MAKE‐NODE(INITIAL‐STATE[\text{problem}])}

\text{for} \ t ← 1 \text{ to } \infty \text{ do}
\quad T ← \text{schedule}[t]
\quad \text{if} \ T = 0 \text{ then return current}
\quad \text{next} ← \text{a randomly selected successor of current}
\quad \Delta E ← \text{VALUE[next] - VALUE[current]}
\quad \text{if} \ \Delta E > 0 \text{ then current} ← \text{next}
\quad \text{else current} ← \text{next only with probability} \ e^{\Delta E/T}

Temperature T

\begin{itemize}
\item high T: probability of “locally bad” move is higher
\item low T: probability of “locally bad” move is lower
\item typically, T is decreased as the algorithm runs longer
\item i.e., there is a “temperature schedule”
\end{itemize}

Simulated Annealing in Practice

• theoretically will always find the global optimum

– Other applications: Traveling salesman, Graph partitioning, Graph coloring, Scheduling, Facility Layout, Image Processing, …

– useful for some problems, but can be very slow

• slowness comes about because T must be decreased very gradually to retain optimality

Local beam search

• Idea: Keeping only one node in memory is an extreme reaction to memory problems.

• Keep track of \(k \) states instead of one
 – Initially: \(k \) randomly selected states
 – Next: determine all successors of \(k \) states
 – If any of successors is goal \(\rightarrow \) finished
 – Else select \(k \) best from successors and repeat

Local Beam Search (contd)

• Not the same as \(k \) random‐start searches run in parallel!
• Searches that find good states recruit other searches to join them

• Problem: quite often, all \(k \) states end up on same local hill

• Idea: Stochastic beam search
 – Choose \(k \) successors randomly, biased towards good ones

• Observe the close analogy to natural selection!
Sure! Check out ye book.

Genetic algorithms
- Twist on Local Search: successor is generated by combining two parent states
- A state is represented as a string over a finite alphabet (e.g., binary)
 - 8-queens
 - State = position of 8 queens each in a column
- Start with k randomly generated states (population)
- Evaluation function (fitness function):
 - Higher values for better states.
 - Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens
- Produce the next generation of states by “simulated evolution”
 - Random selection
 - Crossover
 - Random mutation

Can we evolve 8-queens through genetic algorithms?

Genetic algorithms
- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Evolving 8-queens

Genetic algorithms
- Has the effect of “jumping” to a completely different new part of the search space (quite non-local)
Comments on Genetic Algorithms

- Genetic algorithm is a variant of “stochastic beam search”
- Positive points
 - Random exploration can find solutions that local search can’t
 - (via crossover primarily)
 - Appealing connection to human evolution
 - “neural” networks, and “genetic” algorithms are metaphors!
- Negative points
 - Large number of “tunable” parameters
 - Difficult to replicate performance from one problem to another
 - Lack of good empirical studies comparing to simpler methods
 - Useful on some (small?) set of problems but no convincing evidence that GAs are better than hill-climbing w/random restarts in general

Optimization of Continuous Functions

- Discretization
 - use hill-climbing
- Gradient descent
 - make a move in the direction of the gradient
 - gradients: closed form or empirical

Gradient Descent

Assume we have a continuous function: \(f(x_1, x_2, ..., x_n) \) and we want to minimize over continuous variables \(X_1, X_2, ..., X_n \)

1. Compute the gradients for all \(\frac{\partial f(x_1, x_2, ..., x_n)}{\partial x_i} \)
2. Take a small step downhill in the direction of the gradient:
 \[x_i \leftarrow x_i - \lambda \frac{\partial f(x_1, x_2, ..., x_n)}{\partial x_i} \]
3. Repeat.
 - How to select \(\lambda \)
 - Line search: successively double
 - until \(f \) starts to increase again