Recap: Search Problem

- **States**: configurations of the world
- **Successor function**: function from states to lists of triples (state, action, cost)
- **Start state**
- **Goal test**

Space of Search Strategies

- **Blind Search**: Depth first, breadth first
- **Informed Search**: Uniform cost, greedy, A*, IDA*
- **Constraint Satisfaction**: Backtracking=DFS, FC, k-consistency
- **Adversary Search**

Constraint Satisfaction

- **Kind of search** in which
 - States are **factored** into sets of variables
 - Search = assigning values to these variables
 - Goal test is encoded with constraints
 - Gives **structure** to search space
 - Exploration of one part informs others
- **Backtracking-style algorithms work**
- **But other techniques add speed**
 - Propagation
 - Variable ordering
 - Preprocessing

Example: N-Queens

- **Formulation as search**
 - States
 - Operators
 - Start State
 - Goal Test
Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (often D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows more powerful search algorithms

Example: N-Queens

- CSP Formulation 1:
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints
 $\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$
 $\sum_{i,j} X_{ij} = N$

- CSP Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 Implicit: $\forall i, j$ non-threatening(Q_i, Q_j)
 Explicit: $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots \}$
 \ldots

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - $WA \neq NT$
 - $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}$
- Solutions are assignments satisfying all constraints, e.g.
 - $\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1,2,3,4,5,6,7,8,9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: Cryptarithmetic

- Variables (circles):
 - \(T \quad W \quad U \quad R \quad O \quad X_1 \quad X_2 \quad X_3 \)
- Domains:
 - \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 - \text{alldiff}(F, T, U, W, R, O)
 - \(O + O = R + 10 \cdot X_1 \)

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

 - Look at all intersections
 - Adjacent intersections impose constraints on each other

Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - “General position”: no junctions change with small movements of the eye.
 - Then each line on image is one of the following:
 - Boundary line (edge of an object) (+) with right hand of arrow denoting “solid” and left hand denoting “space”
 - Interior convex edge (+)
 - Interior concave edge (-)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size \(d \) means \(O(d^n) \) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 - $SA \neq \text{green}$
 - Binary constraints involve pairs of variables:
 - $SA \neq WA$
 - Higher-order constraints involve 3 or more variables:
 - e.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Gate assignment in airports
- Transportation scheduling
- Factory scheduling
- Fault diagnosis
- ... lots more!
- Many real-world problems involve real-valued variables...

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Start with straightforward approach, then improve
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

- What does BFS do?
- What does DFS do?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - "Incremental goal test"
- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n ≤ 25

Backtracking Search

- What are the choice points?
Backtracking Example

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures.

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - \(X \rightarrow Y \) is consistent if for every value \(x \) there is some allowed \(y \)

Arc Consistency

- Runtime: \(O(m+d^2) \), can be reduced to \(O(m+d) \)
- … but detecting all possible future problems is NP-hard – why?

[demo: arc consistency animation]
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

Why min rather than max?
 - Also called “most constrained variable”
 - “Fail-fast” ordering

Ordering: Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

Why most rather than fewest constraints?

Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is $O(n/c)(n^d)$, linear in n

E.g., n = 80, d = 2, c = 20
- $2^{20} = 4$ billion years at 10 million nodes/sec
- $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
 - For \(i = n : 2 \), apply RemoveInconsistent(Parent(\(X_i \)), \(X_i \))
 - For \(i = 1 : n \), assign \(X_i \) consistently with Parent(\(X_i \))
- Runtime: \(O(n d^2) \)

Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n d^2) \) time!
- Compare to general CSPs, where worst-case time is \(O(d^n) \)
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size \(c \) gives runtime \(O((d^c)(n-c)d^2) \), very fast for small \(c \)

Iterative Algorithms for CSPs

- Greedy and local methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns \((4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio
 \[
 R = \frac{\text{number of constraints}}{\text{number of variables}}
 \]
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Chinese Food as Search?

- **States?**
 - Partially specified meals
- **Operators?**
 - Add, remove, change dishes
- **Null meal**
- **Start state?**
 - Meal meeting certain conditions (rating?)
- **Goal states?**

Factoring States

- Rather than state = meal
- Model state’s (independent) parts, e.g.
 - Suppose every meal for n people
 - Has n dishes plus soup
 - Soup =
 - Meal 1 =
 - Meal 2 =
 - …
 - Meal n =
- Or… physical state =
 - X coordinate =
 - Y coordinate =

Chinese Constraint Network

CSPs in the Real World

- Scheduling space shuttle repair
- Airport gate assignments
- Transportation Planning
- Supply-chain management
- Computer configuration
- Diagnosis
- UI optimization
- Etc...

Classroom Scheduling

- **Variables?**
- **Domains (possible values for variables)?**
- **Constraints?**
CSP as a search problem?

- What are states?
 - (nodes in graph)
- What are the operators?
 - (arcs between nodes)
- Initial state?
- Goal test?

Crosswords