Outline
(Chapter 7)

Knowledge-based agents
Wumpus world
Logic in general
Propositional logic
 • Inference, validity, equivalence and satisfiability
 • Reasoning
 - Resolution
 - Forward/backward chaining
Knowledge-Based Logical Agents

Chess program doesn’t know that no piece can be on 2 different squares at the same time

Knowledge-based logical agents combine general knowledge about the world with current percepts to infer hidden aspects of their state

• Crucial in partially observable environments

Knowledge Base and Inference

Knowledge Base: set of sentences represented in a knowledge representation language

• stores assertions about the world

Inference: when you ask the KB a question, answer should follow from what has been TELLed to the KB previously

Inference engine --- domain-independent algorithms
Knowledge base --- domain-specific content
Abilities of a KB agent

Agent must be able to:
- Represent states and actions
- Incorporate new percepts
- Update internal representation of the world
- Deduce hidden properties of the world
- Deduce appropriate actions

A Typical Wumpus World
Wumpus World PEAS Description

Performance measure
- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Climbing in [1,1] gets agent out of the cave

Sensors Stench, Breeze, Glitter, Bump, Scream

Actuators TurnLeft, TurnRight, Forward, Grab, Shoot, Climb

Wumpus World Characterization

Observable? No, only local perception
Deterministic? Yes, outcome exactly specified
Episodic? No, sequential at the level of actions
Static? Yes, Wumpus and pits do not move
Discrete? Yes
Single-agent? Yes, Wumpus is essentially a “natural” feature of the environment
Exploring the Wumpus World

[1,1] KB initially contains the rules of the environment. First percept is [none, none, none, none, none], move to safe cell e.g. 2,1

[2,1] Breeze which indicates that there is a pit in [2,2] or [3,1], return to [1,1] to try next safe cell

[1,2] Stench in cell which means that wumpus is in [1,3] or [2,2] but not in [1,1]

YET ... wumpus not in [2,2] or stench would have been detected in [2,1]

THUS ... wumpus must be in [1,3]

ALSO [2,2] is safe because of lack of breeze in [1,2]

THEREFORE pit must be in [3,1] move to next safe cell [2,2]
Exploring the Wumpus World

<table>
<thead>
<tr>
<th></th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>OK</td>
<td>S</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

- \[2,2\] Move to \[2,3\]
- \[2,3\] Detect glitter, smell, breeze
 - Grab gold
 - Breeze implies pit in \[3,3\] or \[2,4\]

How do we represent rules of the world and percepts encountered?

<table>
<thead>
<tr>
<th></th>
<th>1.1</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Why not use logic?
What is a logic?

A formal language

- **Syntax** - what expressions are legal (well-formed)
- **Semantics** - what legal expressions mean
 - In logic the truth of each sentence evaluated with respect to *each possible world*

E.g. the language of arithmetic

- **Syntax**: \(x+2 \geq y\) is a sentence, \(x2y+=\) is not
- **Semantics**:
 - \(x+2 \geq y\) is true in a world where \(x=7\) and \(y=1\)
 - \(x+2 \geq y\) is false in a world where \(x=0\) and \(y=6\)

How do we draw conclusions and deduce new facts about the world using logic?
Entailment

Knowledge Base KB
Sentence α

$\text{KB} \models \alpha \text{ (KB "entails" sentence α)}$
if and only if α is true in all worlds (models) where KB is true.

E.g. $x>4$ entails $x>0$
(because $x>0$ is true for all values of x for which $x>4$ is true)
But not vice versa! ($x>0$ does not entail $x>4$)

Models and Entailment

m is a model of a sentence α if α is true in m
e.g. α is “$x>4$” and $m = \{x=5\}$
α is “$x>0$” and $m = \{x=2\}$

$M(\alpha)$ is the set of all models of α
Then $\text{KB} \models \alpha$ iff $M(\text{KB}) \subseteq M(\alpha)$

E.g. $\text{KB} = x>4$
$\alpha = x>0$
Wumpus world model

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for ?s

- assuming only pits

3 Boolean choices \Rightarrow 8 possible models

8 possible models for pits
Models consistent with rules + observations

$KB = \text{wumpus-world rules + observations}$

Example of Entailment

Is $[1,2]$ safe?
Entailment by Model Checking

$\alpha_1 = \"[1,2] is safe\"

$M(KB) \subseteq M(\alpha_1)$

$KB = \text{wumpus-world rules + observations}$

$\alpha_1 = \"[1,2] is safe\", KB \models \alpha_1$, proved by model checking

Another Example

Is $[2,2]$ safe?

$KB = \text{wumpus-world rules + observations}$
Another Example

$$M(KB)
\nsquare
\nM(\alpha_2)$$

$$KB = \text{wumpus-world rules} \oplus \text{observations}$$

$$\alpha_2 = \text{"[2,2] is safe"}, \ KB \not\models \alpha_2$$

Inference Algorithms:
Soundness and Completeness

If an inference algorithm only derives entailed sentences, it is called sound (or truth preserving).

- Otherwise it just makes things up
- Algorithm i is sound if whenever $$KB \models \alpha$$ (i.e. $$\alpha$$ is derived by i from KB) it is also true that $$KB \models \alpha$$

Completeness: An algorithm is complete if it can derive any sentence that is entailed.

$$i \text{ is complete if whenever } KB \models \alpha \text{ it is also true that } KB \models \alpha$$
Relating to the Real World

If a KB is true in the real world, then any sentence α derived from the KB by a sound inference procedure is also true in the real world.

Propositional Logic: Syntax

Propositional logic is the simplest logic - illustrates basic ideas

Atomic sentences = proposition symbols = $A, B, P_{1,2}, P_{2,2}$ etc. used to denote properties of the world

- Can be either True or False

E.g. $P_{1,2}$ = “There’s a pit in location [1,2]” is either true or false in the wumpus world
Propositional Logic: Syntax

Complex sentences constructed from simpler ones recursively using logical operators

If S is a sentence, $\neg S$ is a sentence (**negation**)
If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (**conjunction**)
If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (**disjunction**)
If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (**implication**)
If S_1 and S_2 are sentences, $S_1 \iff S_2$ is a sentence (**biconditional**)

Propositional Logic: Semantics

A **model** specifies true/false for each proposition symbol

E.g. $P_{1,2} \quad P_{2,2} \quad P_{3,1}$

false \quad true \quad false

Rules for evaluating truth w.r.t. a model m:

- $\neg S$ is true iff S is false
- $S_1 \land S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \lor S_2$ is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
- $S_1 \iff S_2$ is true iff both $S_1 \Rightarrow S_2$ and $S_2 \Rightarrow S_1$ are true
Truth Tables for Connectives

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\neg P)</th>
<th>(P \land Q)</th>
<th>(P \lor Q)</th>
<th>(P \rightarrow Q)</th>
<th>(P \leftrightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Propositional Logic: Semantics

Simple recursive process can be used to evaluate an arbitrary sentence

E.g., Model: \(P_{1,2} \quad P_{2,2} \quad P_{3,1} \)
false \quad true \quad false

\[\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) \]
\[= true \land (true \lor false) \]
\[= true \land true \]
\[= true \]
Example: Wumpus World

Proposition Symbols and Semantics:
Let $P_{i,j}$ be true if there is a pit in $[i, j]$. Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

<table>
<thead>
<tr>
<th>1.1</th>
<th>2.1</th>
<th>3.1</th>
<th>4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>B</td>
<td>P?</td>
<td>OK</td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>2.2</th>
<th>3.2</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>P?</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>2.3</th>
<th>3.3</th>
<th>4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>2.4</th>
<th>3.4</th>
<th>4.4</th>
</tr>
</thead>
</table>

Wumpus KB

Knowledge Base (KB) includes the following sentences:

Statements currently known to be true:

$\neg P_{1,1}$
$\neg B_{1,1}$
$B_{2,1}$

Properties of the world: E.g., "Pits cause breezes in adjacent squares"

$B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
$B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
(and so on for all squares)
Can a Wumpus-Agent use this logical representation and KB to avoid pits and the wumpus, and find the gold?

Is there no pit in [1,2]? \[\text{KB} \vdash \neg P_{1,2} \]

Next Time: Inference using Propositional Logic

To Do:
Project #2 (Multi-Agent PacMan) assigned today!
Read Chapter 7 in textbook

Have a good weekend!