Local search algorithms

• What if *path* to goal is irrelevant? Only interested in *finding* the goal state!

 E.g., N-queens: Put *N* queens on an *N* × *N* board with no two queens on the same row, column, or diagonal
Local Search

Local search algorithms: Keep only a single "current" state and try to improve it

- Advantage: Very little memory required
- Also works in infinite (continuous) state spaces

Hill-climbing search

"Like climbing Mt. Rainier in thick fog with amnesia"

function Hill-Climbing(problem) returns a state that is a local maximum

inputs: problem, a problem
local variables: current, a node
neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
 neighbor ← a highest-valued successor of current
 if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
 current ← neighbor
Hill-climbing search

• Problem: depending on initial state, can get stuck in a local maximum

Example: 8-queens problem

Objective function h?

Here, $h = 17$

Numbers denote h-values for available moves

• $h = \text{number of pairs of queens that are attacking each other, either directly or indirectly}$

• Want to minimize h
Queens attacking each other? Most uncivilized. I prefer tea and crumpets.

Example: 8-queens problem

- A local minimum with $h = 1$. Need $h = 0$
- How to find global minimum/maximum?
Simulated Annealing

- Idea: escape local maxima by allowing some "downhill" moves but gradually decrease their frequency

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
         schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                T, a "temperature" controlling prob. of downward steps

current ← Make-Node(Initial-State[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```

- Select random next
- Move to it for sure if it has higher value
- Otherwise move to it with some probability

Why “annealing”?
Properties of simulated annealing

• One can prove: If T decreases slowly enough, then simulated annealing will find a global optimum with probability approaching 1

• Simulated annealing is widely used for optimizing VLSI layout, airline scheduling, etc.

Instead of just one state, what if you keep multiple current states (of mind)?
Local Beam Search

• Keep track of k states rather than just one
• Start with k randomly generated states
• At each iteration, all the successors of all k states are generated
• If any one is a goal state, stop; else select the k best successors from the complete list and repeat.
Sure, venerable lady – check out my yonder book.

Genetic Algorithms

- Key idea: A successor state is generated by combining two parent states
- Start with k randomly generated states (a population of states)
 - A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluate strings using a fitness function: higher values for better states
- Produce the next generation of states by selection, crossover, and mutation
Example: Evolving 8 Queens

• Need a “fitness function”: how “fit” or desirable (i.e., close to the solution) is a string
• Example: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
One iteration of Genetic algorithm

Initial | Fitness | Selection | Sex | Crossover | Mutation

24748552 | 24 | 31% | 32752411 | 32748552 | 32748152
32752411 | 23 | 29% | 24748552 | 24752411 | 24752411
24415124 | 20 | 26% | 32752411 | 32752124 | 32752124
32543213 | 11 | 14% | 24415124 | 24415411 | 24415421

Fitness:
24/(24+23+20+11) = 31% probability of selection for reproduction
23/(24+23+20+11) = 29% etc.

Queens crossing over

Crossover: What’s happening with the strings

What’s happening on the board
Enough about queens, let's talk about competitive games!

Adversarial Search

• Programs that can play competitive board games
• Minimax search

Board games?? Lemme outta here!
Games Overview

<table>
<thead>
<tr>
<th>Perfect Information (fully observable)</th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imperfect Information (partially observable)</th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>battleships</td>
<td>poker, bridge, scrabble</td>
<td></td>
</tr>
</tbody>
</table>
Games as Search

- **Components:**
 - **States:**
 - **Initial state:**
 - **Successor function:**
 - **Terminal test:**
 - **Utility function:**

Games as Search

- **Components:**
 - **States:** board configurations
 - **Initial state:** the board position and which player will move
 - **Successor function:** returns list of \((move, state)\) pairs, each indicating a legal move and the resulting state
 - **Terminal test:** determines if the game is over
 - **Utility function:** gives a numeric value to terminal states (e.g., -1, 0, +1 in chess for loss, tie, win)
Games as Search

Convention: first player is MAX, 2nd player is MIN

- MAX moves first and they take turns until the game is over
- Winner gets reward, loser gets penalty
- Utility values are from MAX’s perspective
- Initial state + legal moves define the game tree
- MAX uses game tree to determine next move
Optimal Strategy: Minimax Search

- Find the *best move* for MAX assuming MIN also chooses *its* best move.
- Given game tree, optimal strategy determined by computing the *minimax* value of each node:

\[
\text{MINIMAX-VALUE}(n) =
\begin{align*}
\text{UTILITY}(n) & \quad \text{if } n \text{ is a terminal} \\
\max_{s \in \text{succ}(n)} \text{MINIMAX-VALUE}(s) & \quad \text{if } n \text{ is a MAX node} \\
\min_{s \in \text{succ}(n)} \text{MINIMAX-VALUE}(s) & \quad \text{if } n \text{ is a MIN node}
\end{align*}
\]

Two-Ply Game Tree

![Diagram of a two-ply game tree with MAX and MIN nodes and their respective successors.](image)
Two-Ply Game Tree
Two-Ply Game Tree

Minimax decision = A_1

What if MIN does not play optimally?

- Definition of optimal play for MAX assumes MIN plays optimally
 - Maximizes worst-case outcome for MAX
- If MIN does not play optimally, MAX will do even better (utility obtained by MAX will be higher).
 [Prove it! See Exercise 5.7]
Properties of minimax

• **Complete?** Yes (if tree is finite)

• **Optimal?** Yes (against an optimal opponent)
 Suboptimal opponents: Other strategies may do better but these will do worse for optimal opponents

• **Time complexity?** $O(b^m)$

• **Space complexity?** $O(bm)$ (depth-first exploration)

Multiplayer Games

• **More than two players**

• **Single minimax values become vectors**

• **At each node, apply max to appropriate component of minimax vector**
Next Time

• Alpha-beta pruning
• Heuristic evaluation functions
• Rolling the dice

Have a great weekend!