Last Time: A* Search

- Use an evaluation function \(f(n) \) for node \(n \).
 \[f(n) = \text{estimated total cost of path thru } n \text{ to goal} \]
- \(f(n) = g(n) + h(n) \)
 - \(g(n) \): cost so far to reach \(n \)
 - \(h(n) \): estimated cost from \(n \) to goal
- Always choose the node from frontier that has the lowest \(f \) value.
 Frontier = priority queue
A* vs. Uniform Cost Search vs. Dijkstra

• All three are optimal but differ in search strategy, time/space complexity, and goals
• A* uses $f(n) = g(n) + h(n)$ to find shortest path to a single goal
• Uniform cost search uses $f(n) = g(n)$ to find shortest path to a single goal
• Dijkstra’s algorithm also uses $f(n) = g(n)$ but finds shortest paths to all nodes

A* vs. Uniform Cost Search vs. Dijkstra

• A* expands mainly toward the goal with the help of the heuristic function
• Uniform-cost and Dijkstra expand in all directions
• A* can be more efficient if the heuristic is good
Uniform Cost Pac-Man

A* Pac-Man with Manhattan distance heuristic
Recall: Admissible Heuristics

- A^* uses $f(x) = g(x) + h(x)$
- g: cost so far
- h: underestimate of remaining costs

Proved last time: If $h(n)$ admissible, A^* optimal

e.g., h_{SLD} is an admissible heuristic for the route finding problem

More heuristic functions

For the 8-puzzle (get to goal state with smallest # of moves), what are some heuristic functions?

- $h_1(n) = ?$
- $h_2(n) = ?$

![Start State](image1)

![Goal State](image2)
Example heuristic functions

Examples:
• $h_1(n) =$ number of misplaced tiles
• $h_2(n) =$ total Manhattan distance (no. of squares from desired location of each tile)

• $h_1(S) = ?$
• $h_2(S) = ?$

Example heuristics

Examples:
• $h_1(n) =$ number of misplaced tiles
• $h_2(n) =$ total Manhattan distance (no. of squares from desired location of each tile)

• $h_1(S) = ?$ 8
• $h_2(S) = ?$ 3+1+2+2+2+3+3+2 = 18

• Are these admissible heuristics?
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1
- h_2 is better for search (why?)
 Getting closer to the actual cost to goal

- Does one dominate the other for:
 $h_1(n) =$ number of misplaced tiles
 $h_2(n) =$ total Manhattan distance

Dominance

- For 8-puzzle heuristics h_1 and h_2, typical search costs (average number of nodes expanded for solution depth d):

 - $d=12$
 IDS = 3,644,035 nodes
 $A^*(h_1) = 227$ nodes
 $A^*(h_2) = 73$ nodes

 - $d=24$
 IDS = too many nodes to fit in memory
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes
For many problems, A* can still require too much memory

Iterative-Deepening A* (IDA***)

- Less memory required compared to A*
- Like iterative-deepening search, but...
- Depth bound modified to be an \(f\)-limit

 Start with \(\text{limit} = \text{h}(\text{start}) \)

 Prune any node if \(f(\text{node}) > \text{f-limit} \)

 Next \(f\)-limit=min-cost of any node pruned
That’s cool yo but how do you derive heuristic functions?

Relaxed Problems

• Derive admissible heuristic from exact cost of a solution to a relaxed version of problem

For route planning, what is a relaxed problem?

Relax requirement that car has to stay on road
→ Straight Line Distance becomes optimal cost

• Cost of optimal soln to relaxed problem ≤ cost of optimal soln for real problem
Heuristics for eight puzzle

Original: Tile can move from location A to B if A is horizontally or vertically next to B and B is blank

Relaxed 1: Tile can move from any loc A to any loc B
Cost = $h_1 = \text{number of misplaced tiles}$

Relaxed 2: Tile can move from loc A to loc B if A is horizontally or vertically next to B
Cost = $h_2 = \text{total Manhattan distance}$

• What can we relax?
Need for Better Heuristics

Performance of h_2 (Manhattan Distance Heuristic)

- 8 Puzzle: < 1 second
- 15 Puzzle: 1 minute
- 24 Puzzle: 65000 years

Can we do better?

Creating New Heuristics

- Given admissible heuristics h_1, h_2, ..., h_m, none of them dominating any other, how to choose the best?

- Answer: No need to choose only one! Use:
 \[h(n) = \max \{ h_1(n), h_2(n), ..., h_m(n) \} \]
 - h is admissible (why?)
 - h dominates each individual h_i (by construction)
Pattern Databases [Culberson & Schaeffer 1996]

- **Idea:** Use solution cost of a subproblem as heuristic. For 8-puzzle: pick any subset of tiles
 - E.g., 3 tiles
- **Precompute a table**
 - Compute optimal cost of solving just these tiles
 - This is a lower bound on actual cost with all tiles
 - For all possible configurations of these tiles
 - Could be several million
 - Use breadth first search back from goal state
 - State = position of just these tiles (& blank)
- **Admissible heuristic** h_{DB} for complete state = cost of corresponding sub-problem state in database

Combining Multiple Databases

- **Repeat for another subset of tiles**
 - Precompute multiple tables
- **How to combine table values?**
 - Use the max trick!
- **E.g. Optimal solutions to Rubik’s cube**
 - First found w/ IDA* using pattern DB heuristics
 - Multiple DBs were used (diff subsets of cubies)
 - Most problems solved optimally in 1 day
 - Compare with 574,000 years for IDS
Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values
 • But not exceed the actual solution cost (admissible)
 • How?

Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table
 Don’t count moves of tiles not in set
 • This makes sure costs are disjoint
 • Can be added without overestimating!
 • E.g. 8 tile DB has 519 million entries
 • And 7 tile DB has 58 million

• During search
 Look up costs for each set in DB
 Add values to get heuristic function value

 Manhattan distance is a special case of this idea where each set is a single tile
Performance of Disjoint PDBs

- **15 Puzzle:** 2000x speedup vs Manhattan dist
 IDA* with the two DBs solves 15 Puzzles optimally in 30 milliseconds

- **24 Puzzle:** 12 millionx speedup vs Manhattan
 IDA* can solve random instances in 2 days
 Uses DBs for 4 disjoint sets as shown
 Each DB has 128 million entries
 Without PDBs: 65,000 years

Adapted from Richard Korf presentation

Next Time

- Local search
- Gaming search and searching for Games
- To do: Project #1, Reading