Recall: Probabilistic Inference

- Full joint distribution allows inference of all types of probabilities
 - E.g. Given random variables A, B, E, J, M,
 if you want $P(B|J,M)$:
 $$P(B|J,M) = \alpha \ P(B,J,M) = \alpha \ \Sigma_{E,A} P(B,J,M,E,A)$$
 - Problem: Full joint requires you to specify $2*2*2*2*2 = 32$ values
Solution: Bayesian networks

- Simple graphical notation for conditional independence assertions
 - In many cases, allows compact specification of full joint distributions
- Example BN for A, B, E, J, M

\[
P(J,M,A,B,E) = \prod_i P(X_i | \text{Parents}(X_i)) = \]
\[
P(J | A) P(M | A) P(A | B, E) P(B) P(E)
\]
Only requires 2+2+4+1+1=10 values

Why is joint = \(\prod_i P(X_i | \text{Parents}(X_i))\)?

Keep applying definition of conditional probability:

\[
P(J,M,A,B,E) = \]
\[
= P(J | M,A,B,E) P(M,A,B,E)
\]
\[
= P(J | A) P(M,A,B,E)
\]
\[
= P(J | A) P(M | A,B,E) P(A,B,E)
\]
\[
= P(J | A) P(M | A) P(A,B,E)
\]
\[
= P(J | A) P(M | A) P(A | B,E) P(B,E)
\]
\[
= P(J | A) P(M | A) P(A | B,E) P(B) P(E)
\]
Bayesian Network for Burglars and Earthquakes

| B | E | P(A|B,E) |
|---|---|---------|
| T | T | .95 |
| T | F | .94 |
| F | T | .29 |
| F | F | .001 |

What is the probability of Burglary given that John and Mary called?

Compute \(P(B=true \mid J=true, M=true) \)

\[
P(b \mid j,m) = \alpha \cdot P(b,j,m) \\
= \alpha \cdot \sum_{e,a} P(b,j,m,e,a) \\
= \alpha \cdot \sum_{e,a} P(b) \cdot P(e) \cdot P(a \mid b,e) \cdot P(j \mid a) \cdot P(m \mid a) \\
= \alpha \cdot P(b) \cdot \sum_{e} P(e) \cdot \sum_{a} P(a \mid b,e)P(j \mid a)P(m \mid a)
\]

- **Join** all factors containing \(a \)
- **Sum out** \(a \) to get new function of \(b,e,j,m \) only
Variable Elimination (VE) Algorithm

- Eliminate variables one-by-one until there is a factor with only the query variables:
 1. *join* all factors containing that variable, multiplying probabilities
 2. *sum out* the influence of the variable

Remaining factor is a function of b, j, m

\[
P(b|j,m) = \alpha P(b) \sum_e P(e) \sum_a P(a|b,e)P(j|a)P(m|a)
\]

Function of b,j,m

Example of VE: $P(J)$

\[
P(J) = \sum_{M,A,B,E} P(J,M,A,B,E)
\]
\[
= \sum_{M,A,B,E} P(J|A)P(M|A)P(A|B,E)P(B)P(E)
\]
\[
= \sum_A P(J|A) \sum_M P(M|A) \sum_B P(B) \sum_E P(A|B,E)P(E)
\]
\[
= \sum_A P(J|A) \sum_M P(M|A) \sum_B P(B) f1(A,B)
\]
\[
= \sum_A P(J|A) \sum_M P(M|A) f2(A)
\]
\[
= \sum_A P(J|A) f3(A)
\]
\[
= f4(J)
\]
Other Inference Algorithms

- **Direct Sampling:**
 - Repeat N times:
 - Use random number generator to generate sample values for each node
 - Start with nodes with no parents
 - Condition on sampled parent values for other nodes
 - Count frequencies of samples to get an approximation to desired distribution

- **Other variants:** Rejection sampling, likelihood weighting, Gibbs sampling and other MCMC methods (see text)

- **Belief Propagation:** A “message passing” algorithm for approximating $P(X|\text{evidence})$ for each node variable X

- **Variational Methods:** Approximate inference using distributions that are more tractable than original ones (see text for details)

Pac-Man goes Ghost Hunting

Pac-Man does not know true position of the ghost

Must infer probability distribution over true ghost position

Noisy distance prob (if true distance = 8)
Example of Ghost Tracking (movie)

Bayesian Network for Tracking

True ghost position

Ghost moves!

Noisy distance measurement

True ghost positions at time 1, 2,...,N

Noisy distance measurements at time 1, 2,...,N

This “Dynamic” Bayesian network is also called a

Hidden Markov Model (HMM)

• Dynamic = time-dependent
• Hidden = state (ghost position) is hidden
• Markov = current state only depends on previous state

Similar to MDP (Markov decision process) but no actions
Hidden Markov Model (HMM)

HMM is defined by 2 conditional probabilities:

\[P(X_t | X_{t-1}) \] \hspace{1cm} \text{Transition model} \hspace{1cm} = P(X' | X) \\
\[P(E_t | X_t) \] \hspace{1cm} \text{Emission model} \hspace{1cm} = P(E | X) \\

plus initial state distribution \(P(X_1) \)

Project 4: Ghostbusters

- **Plot**: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
 - Blinded by his power, but can hear the ghosts' banging and clanging sounds.

- **Transition Model**: Ghosts move randomly, but are sometimes biased.

- **Emission Model**: Pacman gets a “noisy” distance to each ghost.
Ghostbusters HMM

- \(P(X_t) = \text{uniform} \)
- \(P(X'|X) = \text{ghost usually moves clockwise, but sometimes moves in a random direction or stays in place} \)
- \(P(E|X) = \text{compute Manhattan distance to ghost from Pac-Man and emit a noisy distance given this true distance (see example for true distance = 8)} \)

HMM Inference Problem

- Given evidence (all measurements made so far) \(E_{1:t} = e_{1:t} \)
- Main inference problem:
 - **Filtering**: Find posterior \(P(X_t|e_{1:t}) \) for current \(t \)

Where is the ghost now? Compute posterior probability over \(X_t \)
The “Forward” Algorithm for Filtering

- Want to compute the “belief” \(B_t(X) = P(X_t|e_1:t) \)
- Derive belief update rule from probability definitions, Bayes’ rule and Markov assumption:

\[
P(X_t | e_1,..., e_t) = \alpha P(e_t | X_t, e_1,..., e_{t-1}) P(X_t | e_1,..., e_{t-1})
= \alpha P(e_t | X_t) \sum_{X_{t-1}} P(X_t, X_{t-1} | e_1,..., e_{t-1})
= \alpha P(e_t | X_t) \sum_{X_{t-1}} P(X_t | X_{t-1}, e_1,..., e_{t-1})P(X_{t-1} | e_1,..., e_{t-1})
= \alpha P(e_t | X_t) \sum_{X_{t-1}} P(X_t | X_{t-1})P(X_{t-1} | e_1,..., e_{t-1})
\]

Example of Filtering (Tracking) using the Forward Algorithm (movie)
Particle Filtering Motivation

- Sometimes $|X|$ is too big for exact inference
 - $|X|$ may be too big to even store $\mathbb{B}_r(X)$
 - E.g. when X is continuous
 - $|X|^2$ may be too big to do updates
- **Solution: Approximate inference**
 - Track a set of *samples* of X
 - Samples are called *particles*
 - Number of samples for $X=x$ is proportional to probability of x

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>0.0</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Next Time

- **Particle Filtering and its Applications**
 - Guest lecture by Prof. Dieter Fox

- **To Do:**
 - Project 4 (last project! Assigned today)