Today’s Outline

- Reinforcement Learning
 - Q-learning
 - Exploration versus Exploitation
 - ϵ-Greedy Q-learning
 - Feature-based Q-learning
Two main approaches to RL

- Model-based approaches:
 - Explore environment & learn model $T=P(s' | s, a)$ and $R(s, a, s')$
 - Use model to compute policy MDP-style
 - Works well when state-space is small

- Model-free approach:
 - Don’t learn a model
 - Learn value function (Q value) or policy directly
 - Works better when state space is large
Algorithms for RL

- We will focus on Q-learning
 - From Q-value iteration to Q-learning

- Approaches for mixing exploration & exploitation
 - ϵ-greedy method

Recall: Q-value iteration

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s', a') \right]$$

In RL, we don’t have this!

But we get a sample at each time step t:

$$(s_t, a_t, r_t, s_{t+1})$$
Q-learning Idea

Instead of expectation under T:

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]$$

What if we compute a running average of Q from all samples received thus far?

$$Q(s,a) \leftarrow \frac{1}{t} \sum_{t \text{ samples}} \left(r + \gamma \max_{a'} Q\left(s',a'\right) \right)$$

Why does this compute the correct expectation?
Because environment produces samples at the right frequencies!

Running Average

- Running average of t samples of a quantity x:

 $$\bar{x}_t = \frac{x_1 + x_2 + \ldots + x_{t-1} + x_t}{t}$$

 $$= \frac{x_1 + x_2 + \ldots + x_{t-1}}{t} \cdot \frac{(t-1)}{(t-1)} + \frac{x_t}{t}$$

 $$= \frac{(t-1)}{t} \bar{x}_{t-1} + \frac{1}{t} x_t$$

 $$= (1 - \alpha) \bar{x}_{t-1} + \alpha x_t \quad \text{where} \quad \alpha = 1/t$$

- Running average of Q:

 $$Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + \alpha (r + \gamma \max_{a'} Q\left(s',a'\right))$$
Q-Learning

- Q-Learning = Online sample-based Q-value iteration. At each time step:
 - Execute action and get new sample \((s, a, s', r)\)
 - Incorporate new sample into running average of \(Q\):
 \[
 Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))
 \]
 where \(\alpha\) is the learning rate \((0 < \alpha < 1)\).
 - Update policy:
 \[
 \pi(s) = \arg \max_a Q(s, a)
 \]
RL agents must tackle an Exploration versus Exploitation tradeoff

- You have explored part of your world and found a reward of 100 – is this the best we can do?

- **Exploitation**: Stick with what you know and accumulate reward
 - RISK: You may be missing out on better rewarding states elsewhere

- **Exploration**: Explore world for states w/ more reward
 - RISK: Wasting time & possibly getting negative reward

ε-Greedy Action Selection for Q-learning

- Balance exploration versus exploitation by allowing *some* random actions
 - Every time step, flip a coin
 - With probability ϵ, act randomly
 - With probability $1 - \epsilon$, act according to current policy
 (ϵ is a small positive parameter you choose)

- **Problems with random actions?**
 - Good for exploration but keep thrashing around once learning is done
 - Solution: lower ϵ over time
\(\varepsilon \)-Greedy Q-Learning (Movie)

- Q-learning produces table of Q(s,a) values
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough and...
 - If you make the learning rate α small enough
 - … but not decrease it too quickly!
 - Q-learning not too sensitive to how you select actions (!)

- Neat property: “off-policy” learning
 - learn optimal policy without following it (doing exploration etc.)

Q-Learning – Small Problem

- Doesn’t work in the real world

- In realistic situations, we can’t possibly learn about every single state!
 - Too many states: Cannot visit them all in training
 - Too many states: Cannot hold all Q-values in memory

- Instead, we need to generalize:
 - Learn about a few states from experience
 - Generalize that experience to new, similar states
 (Fundamental idea in machine learning)
Example: Pacman

- Let’s say we discover through experience that this “trapped” state is bad:
- In naïve Q learning, we know nothing about related states and their Q values:
- Or even this third one!

Feature-Based Representations

- Solution: Describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \(1 / (\text{dist to dot})^2\)
 - Is Pacman in a tunnel? (0/1)
 - ….. etc.

- Can also describe a Q-state \((s, a)\) with features (e.g. action in a state moves closer to food)
Next Time

- Feature-based Q-learning
- Uncertainty and Probability
- To Do
 - Finish Chapter 21
 - Read Chapter 13
 - Work on Project 3