Today’s Outline

- MDPs
 - Finding the optimal policy
 - Policy iteration
 - Q-value iteration
- Reinforcement Learning
 - Introduction
Recall: MDPs

- An MDP is defined by:
 - States \(s \in S \)
 - Actions \(a \in A \)
 - Transition function \(T(s,a,s') = P(s' | s,a) \)
 - Reward function \(R(s,a,s') \)
 - Start state

Recall: Value Iteration

- How do we compute \(V^*(s) \) for all states \(s \)?
- Use iterative method called Value Iteration:
 - Start with \(V_0^*(s) = 0 \)
 - Given \(V_i^* \), calculate the values for all states for depth \(i+1 \):
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_i(s') \right]
 \]
 - Repeat until convergence
Example: Value Iteration (Movie)

Optimal Policy: Computing Actions

- Which action to chose in state s:
 - Given optimal Q^*?
 $$\text{Best action} = \arg\max_a Q^*(s, a)$$
 - Given optimal values V^*?
 $$\text{Best action} = \arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
Value Iteration Complexity

- **Problem size:**
 - $|A|$ actions and $|S|$ states

- **Each Iteration**
 - For all s:
 $$V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$
 - Time: $O(|A| \cdot |S|^2)$
 - Space: $O(|S|)$

- **Num of iterations**
 - Can prove that it can be exponential in the discount factor γ

Is there a faster alternative to value iteration?

Yeah, crazy little thing called policy iteration!
Policy Iteration: Motivation

- Problem with value iteration:

 \[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] \]

 - Considering all actions makes each iteration slow

- What if we compute values for some fixed policy \(\pi(s) \)?

 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

 Look, no max, so fast!

Policy Iteration

- Start with an arbitrary policy \(\pi_0 \)
- Repeat until policy converges:
 1. **Policy evaluation (fast):** With fixed current policy \(\pi_k \), iterate values until convergence:

 \[V^\pi_{i+1}(s) = \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V^\pi_i(s') \right] \]

 2. **Policy improvement (slow but infrequent):** Based on converged values in (2), update policy by choosing best action using one-step look-ahead:

 \[\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^\pi_k(s') \right] \]
Policy Iteration Complexity

- Problem size:
 - $|A|$ actions and $|S|$ states

- Each Iteration
 - Time: $O(|S|^3 + |A| \cdot |S|^2)$
 - Space: $O(|S|)$

- Num of iterations
 - Unknown, but can be fast in practice
 - Convergence is guaranteed

One last variation: Q-Value Iteration

- Value iteration updates values for states:
 $$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

 Equivalent to:
 $$V_{i+1}(s) \leftarrow \max_a Q_{i+1}(s, a)$$

 Why not update Q-values instead of V?!

 $$Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$
 i.e.,
 $$Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]$$
Q-Value Iteration

Initialize each Q-state: \(Q_0(s,a) = 0 \)

Repeat

For all Q-states s,a

Compute \(Q_{i+1}(s,a) \) from \(Q_i \) by Bellman update:

\[
Q_{i+1}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
\]

Until \(\max_{s,a} |Q_{i+1}(s,a) - Q_i(s,a)| < \varepsilon \)
(i.e., until convergence of all Q values;
\(\varepsilon \) is a small positive value)

Example: Q-Value Iteration

![Value Iteration](image1)

![Q-Value Iteration](image2)

Numbers show \(V(s) \)

Numbers show \(Q(s,a) \)
What if we don’t know the transition model $T(s,a,s')$ and reward model $R(s,a)$?!

Enter…Reinforcement Learning (RL)

Agent doesn’t know what actions do
Agent doesn’t know which states are good
Try different actions and learn policy by trial-and-error!
Example: Robotic Learning

Crawler robot

(from http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html)

Example: Animal Learning

- **RL studied experimentally for more than 80 years in psychology and brain science**
 - Rewards: food, pain, hunger, drugs, etc.
 - Evidence for RL in the brain via a chemical called dopamine
- **Example: foraging**
 - Bees can learn near-optimal foraging policy in field of artificial flowers with controlled nectar supplies

Yum!
RL solves the “Credit Assignment” Problem

I'm in state 43, reward = 0, action = 2
- “ “ “ 39, “ = 0, “ = 4
- “ “ “ 22, “ = 0, “ = 1
- “ “ “ 21, “ = 0, “ = 1
- “ “ “ 21, “ = 0, “ = 1
- “ “ “ 13, “ = 0, “ = 2
- “ “ “ 54, “ = 0, “ = 2
- “ “ “ 26, “ = 100,

But which of the actions along the way actually helped you get there??
RL solves this Credit Assignment problem

Yippee! I got to a state with a big reward!

The Reinforcement Learning (RL) Problem

- **Given:** Set of states \(S \) and actions \(A \)
 - Do not know transition probabilities \(T \)
 - Do not know reward function \(R \)

- **Interact with environment at each time step \(t \):**
 - Environment gives new state \(s_t \) and reward \(r_t \)
 - Choose next action \(a_t \)

- **Goal:** Learn policy \(\pi \) that maximizes expected discounted sum of rewards
Two main approaches to RL

- **Model-based approaches:**
 - Explore environment & learn model \(T=P(s'|s,a) \) and \(R(s,a,s') \)
 - Use model to compute policy MDP-style
 - Works well when state-space is small

- **Model-free approach:**
 - Don’t learn a model
 - Learn value function (Q value) or policy *directly*
 - Works better when state space is large

Comparison of approaches

- **Model-based approaches:**

 Learn \(T + R \)

 \(|S|^2|A| + |S||A|\) parameters \((\text{E.g., } 200^2 \times 10 + 200 \times 10 = 402,000) \)

- **Model-free approach:**

 Learn \(Q \)

 \(|S||A|\) parameters \((\text{E.g., } 200 \times 10 = 2,000) \)
Next Time

- Model-Free Reinforcement learning
 - Q-learning
- To Do
 - Finish Chapter 17
 - Read Chapter 21
 - Start Project #3