Today’s Agenda

Reasoning with First-Order Logic

Chaining

Resolution

Compilation to SAT
Recall: Unification

- Match up expressions by finding variable values that make the expressions identical
 Unify city(x) and city(seattle) using \{x/seattle\}
- Unify(x, y) returns most general unifier (MGU)
 - MGU = unifier that places fewest restrictions on values of variables

Unification Examples I

- Unify(road(x, kent), road(seattle, y))
 Returns \{x/seattle, y/kent\}
 When substituted in both expressions, the resulting expressions match:
 Each is (road(seattle, kent))

- Unify(road(x, x), road(seattle, kent))
 Not possible - Fails!
 x can’t be seattle and kent at the same time!
Unification Examples II

- Unify\((f(g(x, \text{dog}), y)), f(g(\text{cat}, y), \text{dog}) \)
 \[\{x / \text{cat}, \ y / \text{dog}\}\]
- Unify\((f(g(x)), f(x)) \)
 Fails: no substitution makes them identical.
 E.g. \(\{x / g(x)\}\) yields \(f(g(g(x)))\) and \(f(g(x))\) which are not identical!
- Thus: A variable value may not contain itself in a substitution
 Directly or indirectly

Unification Examples III

- Unify\((f(g(\text{cat}, y), y)), f(x, \text{dog}) \)
 \[\{x / g(\text{cat}, \text{dog}), \ y / \text{dog}\}\]
- Unify\((f(g(y)), f(x)) \)
 \[\{x / g(y)\}\]
- Back to curious monkeys:

\[
\begin{align*}
\text{Monkey}(x) & \rightarrow \text{Curious}(x) \\
\text{Monkey}(\text{George}) & \rightarrow \text{Curious}(\text{George})
\end{align*}
\]

\[\{x / \text{George}\}\]

Unify and then use modus ponens =
\textit{generalized modus ponens (GMP)}
\textit{("Lifted" version of modus ponens)}
Inference I: Forward Chaining

- **The algorithm:**
 - Start with the KB
 - Add any fact you can generate with GMP (i.e., unify expressions and use modus ponens)
 - Repeat until: goal reached or generation halts.

Example

- It is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles. All of its missiles were sold to it by Colonel West, who is American.

- Is Col. West a criminal?

- KB of definite clauses (exactly 1 positive literal):
 - \(\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x,y,z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x) \)
 - \(\text{Owns}(\text{Nono},M_1) \land \text{Missile}(M_1) \)
 - \(\text{Missile}(x) \land \text{Owns}(\text{Nono},x) \Rightarrow \text{Sells}(\text{West},x,\text{Nono}) \)
 - \(\text{Missile}(x) \Rightarrow \text{Weapon}(x) \)
 - \(\text{Enemy}(x,\text{America}) \Rightarrow \text{Hostile}(x) \)
 - \(\text{American}(\text{West}) \)
 - \(\text{Enemy}(\text{Nono},\text{America}) \)
Forward chaining example

Missile(x) ⇒ Weapon(x)
Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono)
Enemy(x, America) ⇒ Hostile(x)

Initial facts in KB

American(West) Missile(M1) Owns(Nono, M1) Enemy(Nono, America)

Facts inferred after 1st iteration

American(West) Missile(M1) Owns(Nono, M1) Enemy(Nono, America)

Weapon(M1) Sells(West, M1, Nono) Hostile(Nono)

{\{x/M_1\}} {\{x/M_1\}} {\{x/\text{Nono}\}}
Forward chaining example

\[\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x) \]

Facts inferred after 1st iteration

Col. West is a criminal

\[\text{Col. West is a criminal} \]

\[\text{Col. West is a criminal} \]

\[\text{Col. West is a criminal} \]

\[\text{Col. West is a criminal} \]
Inference I: Forward Chaining

• Sound? Complete? Decidable?
 Yes; yes for definite KB; no (see p. 331 in text)
• Speed concerns? Inefficiencies due to:
 Unification via exhaustive pattern matching; premise
 rechecking on every iteration; irrelevant fact generation.
 (see Section 9.3.3 for strategies to increase speed)

Inference II: Backward Chaining

• The algorithm:
 Start with KB and goal.
 Find all rules whose results unify with goal:
 Add the premises of these rules to the goal list
 Remove the corresponding result from the goal list
 Stop when:
 Goal list is empty (SUCCEED) or
 Progress halts (FAIL)
Backward chaining example

Goal

American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)

\{x/\text{West}\}
Backward chaining example

Depth-first traversal

KB has:
Missile(y) \implies Weapon(y)
Missile(M_1)

New Subgoal

KB has:
Missile(y) \land Owns(Nono,y) \implies Sells(West,y,Nono)
Missile(M_1)
Owns(Nono,M_1)
Backward chaining example

KB has:

- Enemy(z, America) \Rightarrow Hostile(z)
- Enemy(Nono, America)

New Subgoal

Backward chaining example
Properties of backward chaining

- Depth-first recursive search: space is linear in size of proof
- Incomplete due to infinite loops (e.g. repeated states)
 ⇒ fix by checking current goal against goals on stack
 ⇒ Can’t fix infinite paths though (similar to DFS)
- Inefficient due to repeated computations
 ⇒ fix using caching of previous results (extra space)
- Widely used for logic programming
 E.g., Prolog (logic programming language) – see Section 9.4 in text

Inference III: Resolution

\{ (p \lor q), (\neg p \lor r \lor s) \} \vdash_{R} (q \lor r \lor s)

Recall Propositional Case:
- Literal in one clause
- Its negation in the other
- Result is disjunction of other literals
First-Order Resolution
[Robinson 1965]

\[\{ (p(x) \lor q(A), \neg p(B) \lor r(x) \lor s(y)) \} \]

\[\vdash_R \]

\[(q(A) \lor r(B) \lor s(y)) \]

- Literal in one clause
- Negation of something which unifies in other
- Result is disjunction of all other literals with substitution based on MGU

Inference using First-Order Resolution

- As before, use “proof by contradiction”
 To show \(KB \models a \), show \(KB \land \neg a \) unsatisfiable

- Method
 Let \(S = KB \land \neg \text{goal} \)
 Convert \(S \) to clausal form
 - Standardize variables (replace \(x \) in all with \(y, z, x_1, \ldots \))
 - Move quantifiers to front, skolemize to remove \(\exists \)
 - Replace \(\Rightarrow \) with \(\lor \) and \(\neg \)
 - Use deMorgan’s laws to get CNF (ands-of-ors)
 Resolve clauses in \(S \) until empty clause (unsatisfiable) or no new clauses added
First-Order Resolution Example

• Given
 \(\forall x \) man\((x) \Rightarrow \) human\((x) \)
 \(\forall x \) woman\((x) \Rightarrow \) human\((x) \)
 \(\forall x \) singer\((x) \Rightarrow \) man\((x) \lor \) woman\((x) \)
 singer\((\text{Diddy}) \)

• Prove
 human\((\text{Diddy}) \)

CNF representation (list of clauses):

\[\neg m(x), h(x) \]
\[\neg w(y), h(y) \]
\[\neg s(z), m(z), w(z) \]
\[s(D) \]
\[\neg h(D) \]

Eh yo homies, dis proves human\((\text{Diddy}) \)
Next Time

- Wrap up of FOL
- FOL Wumpus Agent
- To Do
 - Project #2 due this Thursday midnight
 - Read chapter 9