Adversarial Search

Luke Zettlemoyer

Based on slides from Dan Klein
Many slides over the course adapted from either Stuart Russell or Andrew Moore
Today

- **Adversarial Search**
 - Minimax search
 - α-β search
 - Evaluation functions
 - Expectimax
Game Playing State-of-the-Art

- **Checkers**: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!

- **Chess**: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic.

- **Othello**: Human champions refuse to compete against computers, which are too good.

- **Go**: Human champions are beginning to be challenged by machines, though the best humans still beat the best machines. In go, \(b > 300 \), so most programs use pattern knowledge bases to suggest plausible moves, along with aggressive pruning.

- **Pacman**: unknown
General Game Playing

The IJCAI-09 Workshop on General Game Playing
General Intelligence in Game Playing Agents (GIGA'09)
Pasadena, CA, USA

Workshop Organizers

Yngvi Björnsson
School of Computer Science
Reykjavik University

Peter Stone
Department of Computer Sciences
University of Texas at Austin

Michael Thielscher
Department of Computer Science
Dresden University of Technology

Program Committee

Yngvi Björnsson,
Reykjavik University

Patrick Doherty,
Linköping University

Artificial Intelligence (AI) researchers have for decades worked on building game-playing agents capable of matching wits with the strongest humans in the world, resulting in several success stories for games like e.g. chess and checkers. The success of such systems has been for a part due to years of relentless knowledge-engineering effort on behalf of the program developers, manually adding application-dependent knowledge to their game-playing agents. Also, the various algorithmic enhancements used are often highly tailored towards the game at hand.

Research into general game playing (GGP) aims at taking this approach to the next level: to build intelligent software agents that can, given the rules of any game, automatically learn a strategy for playing that game at an expert level without any human intervention. On contrary to software systems designed to play one specific game, systems capable of playing arbitrary unseen games cannot be provided with game-specific domain knowledge a priori. Instead they must be endowed with high-level abilities to learn strategies and make abstract reasoning. Successful realization of this poses many interesting research challenges for a wide variety of artificial-intelligence sub-areas including (but not limited to):
Adversarial Search
Game Playing

- Many different kinds of games!

- Choices:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Perfect information (can you see the state)?

- Want algorithms for calculating a strategy (policy) which recommends a move in each state
Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P=\{1...N\}$ (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $S \times P \rightarrow R$

- Solution for a player is a policy: $S \rightarrow A$
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube

- … it’s just search!

- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)

- After search, can pick move that leads to best node
Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - One player maximizes result
 - The other minimizes result

- Minimax search
 - A state-space search tree
 - Players alternate
 - Choose move to position with highest minimax value = best achievable utility against best play
Tic-tac-toe Game Tree
Minimax Example
Minimax Search

function **Max-Value**(state) returns a utility value
 if **Terminal-Test**(state) then return **Utility**(state)
 \(v \leftarrow -\infty \)
 for \(a, s \) in **Successors**(state) do \(v \leftarrow \text{Max}(v, \text{Min-Value}(s)) \)
 return \(v \)

function **Min-Value**(state) returns a utility value
 if **Terminal-Test**(state) then return **Utility**(state)
 \(v \leftarrow \infty \)
 for \(a, s \) in **Successors**(state) do \(v \leftarrow \text{Min}(v, \text{Max-Value}(s)) \)
 return \(v \)
Minimax Properties

- Optimal against a perfect player. Otherwise?

- Time complexity?
 - $O(b^m)$

- Space complexity?
 - $O(bm)$

- For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Can we do better?
α-β Pruning Example

[Diagram showing a tree with nodes labeled with values and intervals, illustrating the pruning process.]

- A_1 with a value of $[3,3]$
- A_2 with a value of $[-\infty,2]$
- A_3 with a value of $[2,2]$

The diagram illustrates how α-β pruning is applied, showing how certain branches are pruned based on the values and intervals.
\(\alpha - \beta\) Pruning

- **General configuration**
 - \(\alpha\) is the best value that MAX can get at any choice point along the current path
 - If \(n\) becomes worse than \(\alpha\), MAX will avoid it, so can stop considering \(n\)'s other children
 - Define \(\beta\) similarly for MIN
Alpha-Beta Pseudocode

inputs: \textit{state}, current game state
\(\alpha\), value of best alternative for MAX on path to \textit{state}
\(\beta\), value of best alternative for MIN on path to \textit{state}

returns: a utility value

\begin{align*}
\textbf{function MAX-VALUE}(\textit{state}, \alpha, \beta) & \\
\quad \text{if } \text{TERMINAL-TEST}(\textit{state}) \text{ then} & \\
\quad \quad \text{return } \text{UTILITY}(\textit{state}) & \\
\quad v & \leftarrow -\infty & \\
\quad \text{for } a, s \text{ in } \text{SUCCESSORS}(\textit{state}) \text{ do} & \\
\quad \quad v & \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s, \alpha, \beta)) & \\
\quad \quad \text{if } v \geq \beta \text{ then return } v & \\
\quad \quad \alpha & \leftarrow \text{MAX}(\alpha, v) & \\
\text{return } v & \\
\end{align*}

\begin{align*}
\textbf{function MIN-VALUE}(\textit{state}, \alpha, \beta) & \\
\quad \text{if } \text{TERMINAL-TEST}(\textit{state}) \text{ then} & \\
\quad \quad \text{return } \text{UTILITY}(\textit{state}) & \\
\quad v & \leftarrow +\infty & \\
\quad \text{for } a, s \text{ in } \text{SUCCESSORS}(\textit{state}) \text{ do} & \\
\quad \quad v & \leftarrow \text{MIN}(v, \text{MAX-VALUE}(s, \alpha, \beta)) & \\
\quad \quad \text{if } v \leq \alpha \text{ then return } v & \\
\quad \quad \beta & \leftarrow \text{MIN}(\beta, v) & \\
\text{return } v & \\
\end{align*}
Alpha-Beta Pruning Example

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above
Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Properties

- This pruning has **no effect** on final result at the root

- Values of intermediate nodes might be wrong!
 - but, they are bounds

- Good child ordering improves effectiveness of pruning

- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless…
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 – decent chess program
Evaluation Functions

- Function which scores non-terminals

- Ideal function: returns the utility of the position

- In practice: typically weighted linear sum of features:
 - e.g. $f_1(s) = (\text{num white queens} - \text{num black queens})$, etc.

$$
Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
$$
What features would be good for Pacman?

$$\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$
Which algorithm?

α-β, depth 4, simple eval fun
Which algorithm?

α-β, depth 4, better eval fun
Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating
Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

Why do we want to do this for multiplayer games?
Stochastic Single-Player

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, shuffle is unknown
 - In minesweeper, mine locations

- Can do **expectimax search**
 - Chance nodes, like actions except the environment controls the action chosen
 - Max nodes as before
 - Chance nodes take average (expectation) of value of children
Which Algorithms?

Expectimax

Minimax

3 ply look ahead, ghosts move randomly
Stochastic Two-Player

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```plaintext
if state is a MAX node then
  return the highest EXPECTIMINIMAX-VALUE of Successors(state)
if state is a MIN node then
  return the lowest EXPECTIMINIMAX-VALUE of Successors(state)
if state is a chance node then
  return average of EXPECTIMINIMAX-VALUE of Successors(state)
```
Stochastic Two-Player

- Dice rolls increase \(b \): 21 possible rolls with 2 dice
 - Backgammon \(\approx 20 \) legal moves
 - Depth 4 = \(20 \times (21 \times 20)^3 = 1.2 \times 10^9 \)
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play
What if we don’t know what the result of an action will be? E.g.,
- In solitaire, next card is unknown
- In minesweeper, mine locations
- In pacman, the ghosts act randomly

Can do expectimax search
- Chance nodes, like min nodes, except the outcome is uncertain
- Calculate expected utilities
- Max nodes as in minimax search
- Chance nodes take average (expectation) of value of children

Later, we’ll learn how to formalize the underlying problem as a Markov Decision Process
Which Algorithm?

Minimax: no point in trying

3 ply look ahead, ghosts move randomly
Which Algorithm?

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly
Maximum Expected Utility

- Why should we average utilities? Why not minimax?

- Principle of maximum expected utility: an agent should choose the action which maximizes its expected utility, given its knowledge
 - General principle for decision making
 - Often taken as the definition of rationality
 - We’ll see this idea over and over in this course!

- Let’s decompress this definition…
Reminder: Probabilities

- A **random variable** represents an event whose outcome is unknown
- A **probability distribution** is an assignment of weights to outcomes

Example: traffic on freeway?
- Random variable: T = whether there’s traffic
- Outcomes: T in \{none, light, heavy\}
- Distribution: $P(T=\text{none}) = 0.25$, $P(T=\text{light}) = 0.55$, $P(T=\text{heavy}) = 0.20$

Some laws of probability (more later):
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
- $P(T=\text{heavy}) = 0.20$, $P(T=\text{heavy} \mid \text{Hour=8am}) = 0.60$
- We’ll talk about methods for reasoning and updating probabilities later
What are Probabilities?

- **Objectivist / frequentist answer:**
 - Averages over repeated experiments
 - E.g. empirically estimating $P(\text{rain})$ from historical observation
 - E.g. pacman’s estimate of what the ghost will do, given what it has done in the past
 - Assertion about how future experiments will go (in the limit)
 - Makes one think of inherently random events, like rolling dice

- **Subjectivist / Bayesian answer:**
 - Degrees of belief about unobserved variables
 - E.g. an agent’s belief that it’s raining, given the temperature
 - E.g. pacman’s belief that the ghost will turn left, given the state
 - Often learn probabilities from past experiences (more later)
 - New evidence updates beliefs (more later)
Uncertainty Everywhere

- Not just for games of chance!
 - I’m sick: will I sneeze this minute?
 - Email contains “FREE!”: is it spam?
 - Tooth hurts: have cavity?
 - 60 min enough to get to the airport?
 - Robot rotated wheel three times, how far did it advance?
 - Safe to cross street? (Look both ways!)

- Sources of uncertainty in random variables:
 - Inherently random process (dice, etc)
 - Insufficient or weak evidence
 - Ignorance of underlying processes
 - Unmodeled variables
 - The world’s just noisy – it doesn’t behave according to plan!
Reminder: Expectations

- We can define function \(f(X) \) of a random variable \(X \)

- The expected value of a function is its average value, weighted by the probability distribution over inputs

- Example: How long to get to the airport?
 - Length of driving time as a function of traffic:
 \[L(\text{none}) = 20, \ L(\text{light}) = 30, \ L(\text{heavy}) = 60 \]
 - What is my expected driving time?
 - Notation: \(E_{P(T)}[L(T)] \)
 - Remember, \(P(T) = \{\text{none}: 0.25, \ \text{light}: 0.5, \ \text{heavy}: 0.25\} \)

\[
E[L(T)] = L(\text{none}) \times P(\text{none}) + L(\text{light}) \times P(\text{light}) + L(\text{heavy}) \times P(\text{heavy})
\]
\[
E[L(T)] = (20 \times 0.25) + (30 \times 0.5) + (60 \times 0.25) = 35
\]
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences.

- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent’s goals
 - Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)

- In general, we hard-wire utilities and let actions emerge (why don’t we let agents decide their own utilities?)

- More on utilities soon…
Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes
Expectimax Pseudocode

```python
def value(s):
    if s is a max node return maxValue(s)
    if s is an exp node return expValue(s)
    if s is a terminal node return evaluation(s)

def maxValue(s):
    values = [value(s') for s' in successors(s)]
    return max(values)

def expValue(s):
    values = [value(s') for s' in successors(s)]
    weights = [probability(s, s') for s' in successors(s)]
    return expectation(values, weights)
```
Expectimax for Pacman

- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 493</td>
<td>Avg. Score: 483</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: -303</td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman does depth 4 search with an eval function that avoids trouble.
Minimizing ghost does depth 2 search with an eval function that seeks Pacman.
Expectimax Pruning?

- Not easy
 - exact: need bounds on possible values
 - approximate: sample high-probability branches
Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node’s true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For expectimax, we need *magnitudes* to be meaningful
Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```python
if state is a MAX node then
    return the highest EXPECTIMINIMAX-VALUE of Successors(state)
if state is a MIN node then
    return the lowest EXPECTIMINIMAX-VALUE of Successors(state)
if state is a chance node then
    return average of EXPECTIMINIMAX-VALUE of Successors(state)
```
Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon \approx 20 legal moves
 - Depth 4 = $20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play
Multi-player Non-Zero-Sum Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children
 - Can give rise to cooperation and competition dynamically…