MCMC analysis: Outline

Transition probability $q(y \rightarrow y')$

Occupancy probability $\pi_t(y)$ at time t

Equilibrium condition on π_t defines stationary distribution $\pi(y)$

Note: stationary distribution depends on choice of $q(y \rightarrow y')$

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:

- sample each variable given current values of all others

\Rightarrow detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to

sampling conditioned on each variable’s Markov blanket
Stationary distribution

\[\pi_t(y) = \text{probability in state } y \text{ at time } t \]
\[\pi_{t+1}(y') = \text{probability in state } y' \text{ at time } t + 1 \]

\[\pi_{t+1} \text{ in terms of } \pi_t \text{ and } q(y \to y') \]

\[\pi_{t+1}(y') = \sum_y \pi_t(y) q(y \to y') \]

Stationary distribution: \(\pi_t = \pi_{t+1} = \pi \)

\[\pi(y') = \sum_y \pi(y) q(y \to y') \quad \text{for all } y' \]

If \(\pi \) exists, it is unique (specific to \(q(y \to y') \))

In equilibrium, expected “outflow” = expected “inflow”
Detailed balance

“Outflow” = “inflow” for each pair of states:

\[\pi(y)q(y \rightarrow y') = \pi(y')q(y' \rightarrow y) \quad \text{for all } y, y' \]

Detailed balance \Rightarrow \text{ stationarity:}

\[\sum_y \pi(y)q(y \rightarrow y') = \sum_y \pi(y')q(y' \rightarrow y) \]

\[= \pi(y')\sum_y q(y' \rightarrow y) \]

\[= \pi(y') \]

MCMC algorithms typically constructed by designing a transition probability \(q \) that is in detailed balance with desired \(\pi \)
Gibbs sampling

Sample each variable in turn, given all other variables

Sampling Y_i, let \bar{Y}_i be all other nonevidence variables
Current values are y_i and \bar{y}_i; e is fixed
Transition probability is given by

$$q(y \rightarrow y') = q(y_i, \bar{y}_i \rightarrow y_i', \bar{y}_i) = P(y_i' | \bar{y}_i, e)$$

This gives detailed balance with true posterior $P(y | e)$:

$$\pi(y)q(y \rightarrow y') = P(y | e)P(y_i' | \bar{y}_i, e) = P(y_i, \bar{y}_i | e)P(y_i' | \bar{y}_i, e)$$

$$= P(y_i | \bar{y}_i, e)P(\bar{y}_i | e)P(y_i' | \bar{y}_i, e) \quad \text{(chain rule)}$$

$$= P(y_i | \bar{y}_i, e)P(y_i' | \bar{y}_i | e) \quad \text{(chain rule backwards)}$$

$$= q(y' \rightarrow y)\pi(y') = \pi(y')q(y' \rightarrow y)$$