
The EM Algorithm
Preview

• The EM algorithm

• Mixture models

• Why EM works

• EM variants

Learning with Missing Data

• Goal: Learn parameters of Bayes net with known
structure

• For now: Maximum likelihood

• Suppose the values of some variables in some samples
are missing

• If we knew all values, computing parameters would be
easy

• If we knew the parameters, we could infer the missing
values

• “Chicken and egg” problem

The EM Algorithm

Initialize parameters ignoring missing information

Repeat until convergence:

E step: Compute expected values of unobserved variables,
assuming current parameter values

M step: Compute new parameter values to maximize
probability of data (observed & estimated)

(Also: Initialize expected values ignoring missing info)

Example

A B C

Examples: 0 1 1
1 0 0
1 1 1
1 ? 0

Initialization: P (B|A) = P (C|B) =
P (A) = P (B|¬A) = P (C|¬B) =

E-step: P (? = 1) = P (B|A,¬C) = P (A,B,¬C)
P (A,¬C) = . . . = 0

M-step: P (B|A) = P (C|B) =
P (A) = P (B|¬A) = P (C|¬B) =

E-step: P (? = 1) = 0 (converged)

Hidden Variables

• What if some variables were always missing?

• In general, difficult problem

• Consider Naive Bayes structure, with class missing:

P (x) =
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Naive Bayes Model
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Clustering

• Goal: Group similar objects

• Example: Group Web pages with similar topics

• Clustering can be hard or soft

• What’s the objective function?

Mixture Models

P (x) =

nc
∑

i=1

P (ci)P (x|ci)

Objective function: Log likelihood of data

Naive Bayes: P (x|ci) =
∏nd

j=1 P (xj |ci)

AutoClass: Naive Bayes with various xj models

Mixture of Gaussians: P (x|ci) = Multivariate Gaussian

In general: P (x|ci) can be any distribution

Mixtures of Gaussians
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EM for Mixtures of Gaussians

Simplest case: Assume known priors and covariances

Initialization: Choose means at random

E step: For all samples xk:

P (µi|xk) =
P (µi)P (xk|µi)

P (xk)
=

P (µi)P (xk|µi)
∑

i′ P (µi′)P (xk|µi′)

M step: For all means µi:

µi =

∑

xk
x P (µi|xk)

∑

xk
P (µi|xk)

Mixtures of Gaussians (cont.)

• K-means clustering ≺ EM for mixtures of Gaussians

• Mixtures of Gaussians ≺ Bayes nets

• Also good for estimating joint distribution of
continuous variables



Why EM Works

LL(Onew)
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Oold
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θ

Eθold
[log P (X)]

EM Variants

MAP: Compute MAP estimates instead of ML in M step

GEM: Just increase likelihood in M step

MCMC: Approximate E step

Simulated annealing: Avoid local maxima

Early stopping: Faster, may reduce overfitting

Structural EM: Missing data and unknown structure

Summary

• The EM algorithm

• Mixture models

• Why EM works

• EM variants


