Chapter 13

Outline

Methods for handling uncertainty

Uncertainty

Chapter 13 1

Uncertainty

Chapter 13 2

Chapter 13 3

Chapter 13 4

Chapter 13 5

Chapter 13 6
Every probability must correspond to a set or countable set of sample points.

Probability distribution is a countable set of sample points, e.g., every sample point of a finite or at most countable discrete set. Every probability distribution is countable set of sample points.

Where the proposition is true.

Where the proposition is false.

A random variable is a function from sample points to some range. The random variable is a function from sample points to some range.

The de Finetti theorem states that every probability distribution can be represented by a countable set of sample points.

A random variable is a function from sample points to some range.
For any proposition \(\phi \), with the joint distribution one has:

\[
\text{Inference by enumeration}
\]

\[
(p(X|\phi))^{\text{loothac}e} = (\phi)\rho
\]

The kind of inference sanctioned by domain knowledge is crucial but is not always used. Note: the less specific belief remains valid after evidence appears.

If we know more info. is also given, then we have

\[
\text{Inference for conditional distributions}
\]

\[
\text{Conditional probability}
\]

\[
\text{Gaussian density}
\]

\[
\text{Probability for continuous variables}
\]
Normalization

Obvious problems:

The same independence holds if I haven't got a cavity:

The same independence holds if I haven't got a cavity:

Absolute independence powerful but rare

The independence of Toothache and Catch, given Cavity, is conditional on whether I have a cavity.

Inference by enumeration

<table>
<thead>
<tr>
<th>Toothache</th>
<th>Catch</th>
<th>Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toothache</td>
<td>Catch</td>
<td>Cavity</td>
</tr>
<tr>
<td>Toothache</td>
<td>Catch</td>
<td>Cavity</td>
</tr>
</tbody>
</table>

Chapter 13 24

Chapter 13 20

Normalization

By having observed variables and summing over hidden variables

General idea: compute distribution on joint variables

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Equivalent statements:

[Equation]

Other programs:

Currently, the set of worn variables

The same independence holds if I haven't got a cavity:

Let the hidden variable be H = E - A - X

Let the hidden variable be H = E - A - X

The same independence holds if I haven't got a cavity:

The same independence holds if I haven't got a cavity:

The same independence holds if I haven't got a cavity:

Inference by enumeration, cont'd.

Inference by enumeration, cont'd.

Inference by enumeration, cont'd.
Conditional Independence is our most basic and robust form of knowledge about uncertain environments.

Bayesian Rule and Conditional Independence

When positing probabilities of meaningful small size:

\[
0.000000001 = \frac{s}{s|a|d} = \frac{s}{s|a|d|b|c\text{etc.}}
\]

The joint distribution is

\[
\prod_i p_i = \prod_i p_i(q_i|\text{etc.})
\]

We have already seen two examples of naive Bayes model:

\[
\begin{align*}
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)} \\
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)} \\
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)} \\
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)}
\end{align*}
\]

For inferences, p(\text{Cavity}) = p(\text{Cavity} | \text{Toothache}) p(\text{Toothache})

Second term: pits are placed randomly, probability 0.2 per square:

Apply product rule:

\[
\begin{align*}
\text{p(\text{Cavity} | \text{Toothache})} & = \text{p(\text{Cavity} | \text{Toothache})} \\
& = \text{p(\text{Cavity} | \text{Toothache})}
\end{align*}
\]

We know the following facts:

- Cavity
- Toothache
- Second term: pits are placed randomly, probability 0.2 per square:
- Apply product rule:
- The joint distribution is

Specifying the Probability Model

Include only those entries in the probability model

\[
\begin{array}{c|ccc}
\hline
\text{Toothache} & \text{Yes} & \text{No} \\
\hline
\text{Cavity} & \text{Yes} & \frac{1}{2} & \frac{1}{2} \\
\text{No} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
\end{array}
\]

Wumpus World

Specifying the Probability Model

In the probability model, the joint distribution from enumeration is

A joint distribution from enumeration is in the form:

\[
\begin{align*}
\text{p(\text{Cavity} | \text{Toothache})} & = \text{p(\text{Cavity} | \text{Toothache})} \\
& = \text{p(\text{Cavity} | \text{Toothache})}
\end{align*}
\]

We have already seen two examples of naive Bayes model:

\[
\begin{align*}
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)} \\
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)} \\
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)} \\
\mathcal{A} \mathcal{B} | \mathcal{A} \mathcal{B} & = \mathcal{A} \mathcal{B} |
\text{(classical conditional independence)}
\end{align*}
\]

For inferences, p(\text{Cavity}) = p(\text{Cavity} | \text{Toothache}) p(\text{Toothache})

Second term: pits are placed randomly, probability 0.2 per square:

Apply product rule:

\[
\begin{align*}
\text{p(\text{Cavity} | \text{Toothache})} & = \text{p(\text{Cavity} | \text{Toothache})} \\
& = \text{p(\text{Cavity} | \text{Toothache})}
\end{align*}
\]

We know the following facts:

- Cavity
- Toothache
- Second term: pits are placed randomly, probability 0.2 per square:
- Apply product rule:
- The joint distribution is

Specifying the Probability Model

Include only those entries in the probability model

\[
\begin{array}{c|ccc}
\hline
\text{Toothache} & \text{Yes} & \text{No} \\
\hline
\text{Cavity} & \text{Yes} & \frac{1}{2} & \frac{1}{2} \\
\text{No} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
\end{array}
\]

Wumpus World
Independence and conditional independence provide the tools for modeling domains, where we must find a way to reduce the joint size. Queries can be answered by summing over atomic events. Given probability distribution vectors, probability of every atomic event is a rigorous formalism for uncertain knowledge.

\[
\begin{align*}
\langle \text{Her} \rangle_0 &\approx \langle q' \text{Forest} \rangle_0 d \\
\langle \text{Blim} \rangle_0 &\approx \langle q' \text{Forest} \rangle_0 \tau = \langle q' \text{Forest} \rangle_0 d
\end{align*}
\]

Using conditional independence contd.

Using conditional independence contd.