
Reinforcement Learning

Markov Decision Processes

Mausam

CSE 473

Decision Theory MDPs

One-step

Decision Theory

Markov Decision Process

• one-step process

• models choice

• maximizes utility

s u

s s

u

a

a

• sequential process

• models state transitions

• models choice

• maximizes utility

A Planning View

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Fully

vs.

Partially

Observable

Perfect

vs.

Noisy

Deterministic
vs.

Stochastic

Instantaneous
vs.

Durative

Predictable vs. Unpredictable

Classical Planning

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Predictable

Instantaneous

Deterministic

Deterministic, fully observable

Stochastic Planning: MDPs

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Stochastic

Instantaneous

Unpredictable

Stochastic, Fully Observable

Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• Pr(s’|s,a): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state

• : discount factor

• R(s,a,s’): reward model

absorbing/

non-absorbing

Objective of an MDP

• Find a policy : S→ A

• which optimizes

• minimizes expected cost to reach a goal

• maximizes expected reward

• maximizes expected (reward-cost)

• given a ____ horizon

• finite

• infinite

• indefinite

• assuming full observability

discounted

or

undiscount.

Role of Discount Factor ()

• Keep the total reward/total cost finite

• useful for infinite horizon problems

• Intuition (economics):

• Money today is worth more than money tomorrow.

• Total reward: r1 + r2 + 2r3 + …

• Total cost: c1 + c2 + 2c3 + …

Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP

• <S, A, Pr, C, G, s0>

• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP

• <S, A, Pr, R, >

• Most often studied in machine learning, economics, operations
research communities

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP

• <S, A, Pr, G, R, s0>

• Relatively recent model

most popular

Bellman Equations for MDP1

• <S, A, Pr, C, G, s0>

• Define J*(s) {optimal cost} as the minimum

expected cost to reach a goal from this state.

• J* should satisfy the following equation:

Bellman Equations for MDP2

• <S, A, Pr, R, s0, >

• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:

Bellman Backup (MDP2)

• Given an estimate of V* function (say Vn)

• Backup Vn function at state s

• calculate a new estimate (Vn+1) :

• Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a)

V

R V

ax

Bellman Backup

V0= 0

V0= 1

V0= 2

Q1(s,a1) = 2 + 0 

Q1(s,a2) = 5 +  0.9£ 1

+  0.1£ 2

Q1(s,a3) = 4.5 + 2 

max

V1= 6.5

(~1)

agreedy = a3

5
a2

a1

a3

s0

s1

s2

s3

Value iteration [Bellman’57]

• assign an arbitrary assignment of V0 to each state.

• repeat

• for all states s

• compute Vn+1(s) by Bellman backup at s.

• until maxs |Vn+1(s) – Vn(s)| < 

Iteration n+1

Residual(s)

-convergence

Comments

• Decision-theoretic Algorithm

• Dynamic Programming

• Fixed Point Computation

• Probabilistic version of Bellman-Ford Algorithm
• for shortest path computation

• MDP1 : Stochastic Shortest Path Problem

 Time Complexity

• one iteration: O(|S|2|A|)

• number of iterations: poly(|S|, |A|, 1/(1-))

 Space Complexity: O(|S|)

 Factored MDPs

• exponential space, exponential time

Convergence Properties

• Vn → V* in the limit as n→1

• -convergence: Vn function is within  of V*

• Optimality: current policy is within 2/(1-) of optimal

• Monotonicity
• V0 ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

• V0 ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)

• otherwise Vn non-monotonic

Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

ax

ax R V

R VV

Changing the Search Space

• Value Iteration

• Search in value space

• Compute the resulting policy

• Policy Iteration

• Search in policy space

• Compute the resulting value

Policy iteration [Howard’60]

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1: the evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• searching in a finite (policy) space as opposed to

uncountably infinite (value) space ⇒ convergence faster.

• all other properties follow!

costly: O(n3)

approximate

by value iteration

using fixed policy

Modified

Policy Iteration

Modified Policy iteration

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1 the approx. evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• probably the most competitive synchronous dynamic

programming algorithm.

Reinforcement Learning

Reinforcement Learning

 Still have an MDP

• Still looking for policy 

 New twist: don’t know Pr and/or R

• i.e. don’t know which states are good

• and what actions do

 Must actually try out actions to learn

Model based methods

 Visit different states, perform different actions

 Estimate Pr and R

 Once model built, do planning using V.I. or

other methods

 Con: require _huge_ amounts of data

Model free methods

 Directly learn Q*(s,a) values

 sample = R(s,a,s’) + maxa’Qn(s’,a’)

 Nudge the old estimate towards the new sample

 Qn+1(s,a)  (1-)Qn(s,a) + [sample]

Properties

 Converges to optimal if

• If you explore enough

• If you make learning rate () small enough

• But not decrease it too quickly

• ∑i(s,a,i) = ∞

• ∑i
2(s,a,i) < ∞

where i is the number of visits to (s,a)

Model based vs. Model Free RL

 Model based

• estimate O(|S|2|A|) parameters

• requires relatively larger data for learning

• can make use of background knowledge easily

 Model free

• estimate O(|S||A|) parameters

• requires relatively less data for learning

Exploration vs. Exploitation

 Exploration: choose actions that visit new states in

order to obtain more data for better learning.

 Exploitation: choose actions that maximize the

reward given current learnt model.

 -greedy

• Each time step flip a coin

• With prob , take an action randomly

• With prob 1- take the current greedy action

 Lower  over time

• increase exploitation as more learning has happened

