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Decision Theory MDPs

One-step

Decision Theory

Markov Decision Process

• one-step process

• models choice

• maximizes utility
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• sequential process

• models state transitions

• models choice

• maximizes utility



A Planning View
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Classical Planning
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Deterministic, fully observable



Stochastic Planning: MDPs
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Stochastic, Fully Observable



Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• Pr(s’|s,a): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state

• : discount factor

• R(s,a,s’): reward model

absorbing/

non-absorbing



Objective of an MDP

• Find a policy : S→ A

• which optimizes 

• minimizes expected cost to reach a goal

• maximizes expected reward

• maximizes expected (reward-cost)

• given a ____ horizon

• finite

• infinite

• indefinite

• assuming full observability

discounted

or

undiscount.



Role of Discount Factor ()

• Keep the total reward/total cost finite

• useful for infinite horizon problems

• Intuition (economics): 

• Money today is worth more than money tomorrow.

• Total reward: r1 + r2 + 2r3 + …

• Total cost: c1 + c2 + 2c3 + …



Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP

• <S, A, Pr, C, G, s0>

• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP

• <S, A, Pr, R, >

• Most often studied in machine learning, economics, operations 
research communities

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP

• <S, A, Pr, G, R, s0>

• Relatively recent model

most popular



Bellman Equations for MDP1

• <S, A, Pr, C, G, s0>

• Define J*(s) {optimal cost} as the minimum 

expected cost to reach a goal from this state.

• J* should satisfy the following equation:



Bellman Equations for MDP2

• <S, A, Pr, R, s0, >

• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:



Bellman Backup (MDP2)

• Given an estimate of V* function (say Vn)

• Backup Vn function at state s 

• calculate a new estimate (Vn+1) :

• Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a)

V

R V

ax



Bellman Backup
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Value iteration [Bellman’57]

• assign an arbitrary assignment of V0 to each state.

• repeat

• for all states s

• compute Vn+1(s) by Bellman backup at s.

• until maxs |Vn+1(s) – Vn(s)| < 

Iteration n+1

Residual(s)

-convergence



Comments

• Decision-theoretic Algorithm

• Dynamic Programming 

• Fixed Point Computation

• Probabilistic version of Bellman-Ford Algorithm
• for shortest path computation

• MDP1 : Stochastic Shortest Path Problem

 Time Complexity

• one iteration: O(|S|2|A|) 

• number of iterations: poly(|S|, |A|, 1/(1-)) 

 Space Complexity: O(|S|)

 Factored MDPs

• exponential space, exponential time



Convergence Properties

• Vn → V* in the limit as n→1

• -convergence: Vn function is within  of V*

• Optimality: current policy is within 2/(1-) of optimal

• Monotonicity
• V0 ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

• V0 ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)

• otherwise Vn non-monotonic



Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

ax

ax R V

R VV



Changing the Search Space

• Value Iteration

• Search in value space

• Compute the resulting policy

• Policy Iteration

• Search in policy space

• Compute the resulting value



Policy iteration [Howard’60]

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1: the evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

• until n+1 = n

Advantage

• searching in a finite (policy) space as opposed to 

uncountably infinite (value) space ⇒ convergence faster.

• all other properties follow!

costly: O(n3)

approximate

by value iteration 

using fixed policy

Modified 

Policy Iteration



Modified Policy iteration

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1 the approx. evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

• until n+1 = n

Advantage

• probably the most competitive synchronous dynamic 

programming algorithm.



Reinforcement Learning



Reinforcement Learning

 Still have an MDP

• Still looking for policy 

 New twist: don’t know Pr and/or R

• i.e. don’t know which states are good

• and what actions do

 Must actually try out actions to learn



Model based methods

 Visit different states, perform different actions

 Estimate Pr and R

 Once model built, do planning using V.I. or 

other methods

 Con: require _huge_ amounts of data



Model free methods

 Directly learn Q*(s,a) values

 sample = R(s,a,s’) + maxa’Qn(s’,a’)

 Nudge the old estimate towards the new sample

 Qn+1(s,a)  (1-)Qn(s,a) + [sample]



Properties

 Converges to optimal if

• If you explore enough

• If you make learning rate () small enough

• But not decrease it too quickly

• ∑i(s,a,i) = ∞

• ∑i
2(s,a,i) < ∞

where i is the number of visits to (s,a)



Model based vs. Model Free RL

 Model based

• estimate O(|S|2|A|) parameters

• requires relatively larger data for learning

• can make use of background knowledge easily

 Model free

• estimate O(|S||A|) parameters

• requires relatively less data for learning



Exploration vs. Exploitation

 Exploration: choose actions that visit new states in 

order to obtain more data for better learning.

 Exploitation: choose actions that maximize the 

reward given current learnt model.

 -greedy

• Each time step flip a coin

• With prob , take an action randomly

• With prob 1- take the current greedy action

 Lower  over time 

• increase exploitation as more learning has happened


