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Decision Theory > MDPs

One-step @_> U
Decision Theory -

* One-step process
* models choice
* maximizes utility

Markov Decision Process

* sequential process

* models state transitions
* models choice

e maximizes utility



A Planning View
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Deterministic, fully observable




Stochastic Planning: MDPs
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Stochastic, Fully Observable
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Decision Process (MDP)
K S: A set of states \

 A: A set of actions

Pr(s’|s,a)\transition model
s,a,s’.ALost model
. absorbing/
G: set of goals > non-absorbing
* S,. start state

* v: discount factor

KR(s,a,s’): reward model /




Objective of an MDP

Finda policy: S— A

which optimizes

* minimizes (Jiscounted) €Xpected cost to reach a goal
* maximizes or expected reward

« maximizes (undiscount.) expected (reward-cost)

givena___ horizon
 finite
* infinite
 indefinite

assuming full observability



Role of Discount Factor ()

Keep the total reward/total cost finite
« useful for infinite horizon problems

Intuition (economics):
* Money today is worth more than money tomorrow.

Total reward: ry + yr, + yr3 + ..
Total cost: ¢, + yc, + y%C5 + ...



Examples of MDPs

 Goal-directed, Indefinite Horizon, Cost Minimization MDP
¢ <Ss A! Pra C! Gs SO>
* Most often studied in planning, graph theory communities

__Infinite Horizon, Discounted Reward Maximization M@‘\
* <5, A PR, most popular

» Most often studied in machine learning, economics, operations
research communities

« Oversubscription Planning: Non absorbing goals, Reward Max. MDP
¢ <S’ A! Pr’ g! R, SO>
* Relatively recent model



Bellman Equations for MDP,

« <S§, A, Pr,C, G,s,>

« Define J*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« J* should satisfy the following equation:

0 s€¢g
min > Pr(s|s,a) {C(s,a,s’) + J*(s")

ac Ap(s) JeS




Bellman Equations for MDP,

° <S! A, ’PI’, R’ SO,Y>

* Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

« V* should satisfy the following equation:




Bellman Backup (MDP,)

» Given an estimate of V* function (say V,)

« Backup V,, function at state s
» calculate a new estimate (V1)

> Pr(s'ls,a) Ris, a.s") +1Vh(s)

s'eS

aX n ?
ae"plp(s) [Qn41(s,a)]

* Q,.1(s,a): value/cost of the strategy:
e execute action a in s, execute wt, subsequently
* W, = argmaXaEAp(s)Qn(Sva)



Bellman Backup

Qs(s,a)) =2 +0y

Qq(s,a,) =5+y0.9x 1
+vy0.1x 2

Qq(s,a;) =4.5+2y




Value iteration [Bellman’57]

 assign an arbitrary assignment of V, to each state.

e repeat
for all states s

lteration n+1
Bellman bac

« until max,{V, . (s)- V(s

Residual(s)

e-convergence



Comments

* Decision-theoretic Algorithm
* Dynamic Programming
* Fixed Point Computation

* Probabilistic version of Bellman-Ford Algorithm
« for shortest path computation
 MDP; : Stochastic Shortest Path Problem

= Time Complexity

* one iteration: O(|S|?|.A|)

« number of iterations: poly(|S|, |A|, 1/(1-y))
= Space Complexity: O(|S])
» Factored MDPs

e exponential space, exponential time



Convergence Properties

V,— V*in the limit as h—oo
g-convergence: V_ function is within g of V*
Optimality: current policy is within 2gy/(1—y) of optimal

Monotonicity
¢ V<V 2V, < VF (V,, monotonic from below)
« Vo> V =2V, > V* (V, monotonic from above)
 otherwise V, hon-monotonic



Policy Computation

argmax Q*(s,a
CLEAp(S)Q ( )

argmax Y Pr(s'ls,a) [’R,(s,a,,s') 4y V*(s")
acAp(s) deS

Policy Evaluation

A system of linear equations in |S| variables.



Changing the Search Space

* Value lteration
« Search in value space
« Compute the resulting policy

* Policy lteration
« Search in policy space
« Compute the resulting value



Policy iteration [Howard’60]

« assign an arbitrary assignment of r, to each state.

* repe - costly: O(n3)
. licy Evalua@:ompute V., .4: the evaluation of &, T

* Policy Improvement: for all states s
* compute m,.1(S): argmaXae aps)Qn+1(S,a)

©untilmy,y =m, Modified
Policy Iteration

approximate
> Py value iteration
using fixed policy

Advantage

e searching in a finite (policy) space as opposed to
uncountably infinite (value) space = convergence faster.

 all other properties follow!



Modified Policy iteration

 assign an arbitrary assignment of n, to each state.

* repeat
» Policy Evaluation: compute V., the approx. evaluation of &,
* Policy Improvement: for all states s
* compute m,.1(S): argmaXae aps)Qn+1(S,a)

Advantage

* probably the most competitive synchronous dynamic
programming algorithm.



Reinforcement Learning



Reinforcement Learning

= Still have an MDP
o Still looking for policy «

= New twist: don’t know Pr and/or R

* |.e. don’t know which states are good
« and what actions do

= Must actually try out actions to learn



Model based methods

» Visit different states, perform different actions
» Estimate Prand R

= Once model built, do planning using V.l. or
other methods

= Con: require _huge_ amounts of data



Model free methods

= Directly learn Q*(s,a) values

Q*(s,a) = Y Pr(s]s,a) |R(s,a,s") +V*(s)

s'eS
R*(s,a) = > Pr(s]s,a) [’R(S,a,sl) + ymaz Q* (s, a’)

s'eS

» sample =R(s,a,s’) + ymax,_,Q,(s’,a’)
= Nudge the old estimate towards the new sample
" Qu.q(s,a) < (1-a)Q,(s,a) + a[sample]



Properties

= Converges to optimal if
* If you explore enough
* |If you make learning rate (o) small enough
* But not decrease it too quickly

° ZiOL(S,a,i) = @
e Y.a?(s,a,i)< ™
where i is the number of visits to (s,a)



Model based vs. Model Free RL

* Model based
« estimate O(|S|?%|.A|) parameters
 requires relatively larger data for learning
« can make use of background knowledge easily

= Model free
 estimate O(|S]|.A|) parameters
* requires relatively less data for learning



Exploration vs. Exploitation

= Exploration: choose actions that visit new states in
order to obtain more data for better learning.

= Exploitation: choose actions that maximize the
reward given current learnt model.

= g-greedy
« Each time step flip a coin
* With prob ¢, take an action randomly
« With prob 1-¢ take the current greedy action

= Lower ¢ over time
* Increase exploitation as more learning has happened



