
Assignment 4
CSE 473 Autumn 2010

November 24, 2010

The assignment is graded out of 100 points and is due December 10 by email to
guillory@cs.washington.edu before class. Attach to this email a zip file con-
taining your code and your writeup. Put your writeup in a PDF file titled “writeup.pdf”

Implement Decision Tree Learning (50 points)
Problem 1. (50 points) Implement decision tree learning as described in Section 18.3
of the text book. Your implementation should work for data sets with binary features
and binary labels (it can work for other kinds of features and labels too, but we only
require that it works for binary features and binary labels). Implement the recursive
training procedure given in Figure 18.5 with two extensions:

• Your code should take in a parameter depth which specifies the maximum height
of the tree. If depth is 0 then the tree produced should be a single node. If depth
is 1 then the tree should be at most a node whose children are leaf nodes (this
is sometimes called a decision stump). More generally, if depth is n then there
should be at most n non-leaf nodes along any path from the root to a leaf node.

• Your code should also take in a parameter splittingRule which is either INFO GAIN
or RANDOM . If this value is set to INFO GAIN then your training pro-
cedure should use the information gain heuristic described in the book to pick
which feature to use at each node. If this value is set to RANDOM then it
should use a randomly selected feature at each node.

Also implement a procedure for predicting the label of an unlabeled test example.
To help you out, we’ve provided some skeleton code http://www.cs.washington.

edu/education/courses/cse473/10au/a4.zip. Here is a (non exhaus-
tive) list of things we’ll be looking for when grading your implementation:

• Data structures for storing the decision tree

• Correct stopping criteria in your recursive training procedure

• Correct recursive calls in your recursive training procedure

1

http://www.cs.washington.edu/education/courses/cse473/10au/a4.zip
http://www.cs.washington.edu/education/courses/cse473/10au/a4.zip


• Correct information gain computations

• Correct prediction procedure

• Reasonably efficient implementation (In training, each call should take time
O(n ∗ d) where n is the number of examples and d is the number of features.
Prediction should take O(d) for a single example.)

Here are some implementation hints:

• When calculating the entropy of a boolean random variable, make sure to cor-
rectly handle the cases where p = 0 and p = 1.

• Similarly, watch out for division by zero when computing probabilities

• Stick to binary valued features. This will simplify your code.

• If you’re getting strange results, try printing out your information gain values.
These should all be between 0 and 1.

Test Your Implementation (50 points)
Problem 2. Test your implementation on the data set provided at http://www.cs.
washington.edu/education/courses/cse473/10au/a4.zip. In this zip
file you’ll find a file “train.txt” and “test.txt” containing training and test data re-
spectively. Each file is in CSV (comma separated value) format. The first 38 val-
ues on each line are binary features and the last value on each line is the binary la-
bel. The task in this data set is to predict the winner in a chess end game involv-
ing King and Rook versus King and Pawn. The features are derived from the chess
positions and the label is 1 if white can win and 0 if white cannot win. The data
set is take from the UCI Machine Learning Repository and you can find the origi-
nal data set here: http://archive.ics.uci.edu/ml/datasets/Chess+
(King-Rook+vs.+King-Pawn). We’ve modified the data set to convert all fea-
tures to binary and split the data into train and test sets. There are 2109 examples in
the training set and 1087 examples in the test set (about a 2/3 train/test split).

Write a brief (no more than 3 pages) discussion of your implementation and re-
sults. This writeup should include one or more plots showing the training and test set
accuracy on the provided data set for all values of depth between 0 and 30 and for
both values of splittingRule. When computing accuracy values for splittingRule =
RANDOM , average over 100 runs. A simple way to plot all this would be as a line
graph with depth on the x axis and accuracy on the y axis. You can then include
a training accuracy and test accuracy line for both values of splittingRule (4 lines
total).

Also discuss in your writeup

• A brief overview of your code (where to find what parts of your implementation)

• Which values of depth and splittingRule gave the best test set accuracy and
why

2

http://www.cs.washington.edu/education/courses/cse473/10au/a4.zip
http://www.cs.washington.edu/education/courses/cse473/10au/a4.zip
http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)
http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)


• Which values of depth and splittingRule gave the best training set accuracy
and why

• Which values of depth and splittingRule gave the largest difference between
training and test set accuracy and why

• Any problems you encountered, possible bugs in your implementation

Extra Credit: Random Forests (10 points)
Problem 3. You probably found that random splitting did not give as good test set
accuracy as information gain splitting. Try the following: instead of training a single
random decision tree, train m random decision trees. Then to predict the label of an
unlabeled example, take the majority prediction of all m decision trees. A reasonable
value for m is 100. Variations of this method are sometimes called “Random Forests”
or “Random Decision Forests”. Test this method on the provided data set and include
this method in your experiments and in your writeup.

3


