
Assignment 2
CSE 473 Autumn 2010

October 22, 2010

The assignment is graded out of 100 points and is due November 5 by email to
guillory@cs.washington.edu before class. Attach to this email a zip file con-
taining your code and answers to the questions. Put your answers in a text file titled
“answers.txt”. Be sure to number your answers.

Create a Knowledge Base (40 points)
Problem 1. (21 points) Using the following predicates

• ParentOf(A, B) (A is a parent of B)

• AncestorOf(A, B) (A is an ancestor of B)

• Siblings(A, B) (A is a sibling to B)

• Cousins(A, B) (A is a cousin to B)

• BloodRelated(A, B) (A is blood related to B)

Convert the following statements into first order logic. Write your answers in plain
text in “answers.txt” using &, |, ->, forall, and ! in place of ∨, ∧,⇒, ∀, and ¬.
A. (3 points) Someone’s parent is also someone’s ancestor
B. (3 points) If a first person is a sibling to a second person, then the second person is
also a sibling to the first person.
C. (3 points) The ancestors of someone’s ancestors are also that someone’s ancestors.
D. (3 points) If two people’s parents are siblings, then they are cousins
E. (3 points) If a first person is a blood related to a second person, then the second
person is also blood related to the first person.
F. (3 points) A person is blood related to their ancestors
G. (3 points) If a person is blood related to someone, then they are also blood related
to people for whom that someone is an ancestor.

Problem 2. (13 points) Convert your knowledge base into conjunctive normal form
and then convert it into propositional logic using the following set of 5 ground terms:
Frank, Bob, Jill, Mary, Tom. In addition to the rules above, add to your know-
eldge base the following assertions:

1



• ParentOf(Jill, F rank)

• ParentOf(Bob, Mary)

• ParentOf(Tom, Bob)

• ParentOf(Tom, Jill)

• Siblings(Jill, Bob)

Save the result into a text file “knowledgebase.txt” using the following format:

• Each line of the text file is a clause

• A clause is written as a sequence of literals each separated by a space

• Each literal is written as a proposition which may or may not be preceeded by a
“!” indicating negation

• A proposition is written as a string of characters which does not contain any
spaces

For example, the knowledge base BloodRelated(Frank, Jill)∧(BloodRelated(Tom, Jan)∨
¬Siblings(Tom, Jan)) would be written as

BloodRelated(Frank,Jill)
BloodRelated(Tom,Jan) !Siblings(Tom,Jan)

Note that your final knowledge base will have close to 1000 clauses, so you prob-
ably don’t want to do this by hand. To help you out, we’ve provided a small amount
of Java code. You can download this code from http://www.cs.washington.
edu/education/courses/cse473/10au/a2.zip. This code provides basic
data structures for reprsenting a knowledge base in CNF form and code for reading and
writing the format described above. We’ve also provided a function which expands
a knowledge base by replacing variables with ground terms. See the function named
“propositionalize” in the file “Main.java” and read the code and comments there to see
how it works. You do not have to use this code, but you will probably find it helpful.

Problem 3. (6 points) What about this knowledge base makes it easy to proposition-
alize? What about this knowledge base makes it easy to run inference on?

Implement and test WalkSAT (60 points)
Problem 4. (30 points) Implement WalkSAT as it is writen in the book. Your im-
plementation should take in a knowledge base in the format described above and two
parameters p and maxFlips. It should then output true if the knowledge base is sat-
isfiable and false otherwise.

We suggest you use the code we’ve provided as a starting point: http://www.
cs.washington.edu/education/courses/cse473/10au/a2.zip. We
don’t require you use this code however. If you use a language other than Java, please
contact the TA to be sure that we will be able to read and run your code.

2

http://www.cs.washington.edu/education/courses/cse473/10au/a2.zip
http://www.cs.washington.edu/education/courses/cse473/10au/a2.zip
http://www.cs.washington.edu/education/courses/cse473/10au/a2.zip
http://www.cs.washington.edu/education/courses/cse473/10au/a2.zip


Problem 5. (10 points) WalkSAT, like any satisfiability solver, can be used for infer-
ence. How can we do this? WalkSAT sometimes returns false even if the knowledge
base is in fact satisfiable. What sort of errors will WalkSAT sometimes make when we
use it for inference? Is it sound? Complete?

Problem 6. (10 points) Test your WalkSAT implementation by using it to answer the
following inference queries:

• Cousins(Frank, Mary)

• AncestorOf(Tom, Mary)

• BloodRelated(Tom, Frank)

• AncestorOf(Bob, Frank)

• Cousins(Jill, Bob)

Use parameters p = .5 and maxFlips = 10000 and report back the results. Run
each inference multiple times. Does your implementation ever report back the wrong
answer on these queries using these parameters?

Problem 7. (10 points) Repeat the experiments above using different values of p and
maxFlips and report the results. What happens if you make maxFlips smaller?
Larger? How sensitive is the algorithm to changes in p?

Problem 8. Extra Credit (10 points) There are two major performance bottlenecks in
the WalkSAT algorithm: (1) computing the set of unsatisfied clauses and (2) computing
the change in the number of unsatisfied clauses as a result of flipping a truth value. High
performance implementations of WalkSAT speed up these computations through clever
data structures.

Modify your implementation of WalkSAT to speed up one or both of these compu-
tations. Describe the changes you made. How much faster is your new implementation
in theory? In practice?

3


