Planning

CSE 473
Chapters 10.3 and 11
Planning

• Given
 a logical description of the initial situation,
 a logical description of the goal conditions, and
 a logical description of a set of possible actions,

• find
 a sequence of actions (a plan of action) that
 brings us from the initial situation to a situation in
 which the goal conditions hold.
Example: BlocksWorld
Planning Input:
State Variables/Propositions

- Types: block --- a, b, c
- (on-table a) (on-table b) (on-table c)
- (clear a) (clear b) (clear c)
- (arm-empty)
- (holding a) (holding b) (holding c)
- (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

No. of state variables = 16
No. of states = 2^{16}
No. of reachable states = ?

- (on-table ?b); clear (?b)
- (arm-empty); holding (?b)
- (on ?b1 ?b2)
Planning Input: Actions

• pickup a b, pickup a c, …
• place a b, place a c, …
• pickup-table a, pickup-table b, …
• place-table a, place-table b, …

• pickup ?b1 ?b2
• place ?b1 ?b2
• pickup-table ?b
• place-table ?b

Total: 6 + 6 + 3 + 3 = 18 “ground” actions

Total: 4 action schemata
Planning Input: Actions (contd)

• :action pickup ?b1 ?b2
 :precondition
 (on ?b1 ?b2)
 (clear ?b1)
 (arm-empty)
 :effect
 (holding ?b1)
 (not (on ?b1 ?b2))
 (clear ?b2)
 (not (arm-empty))

• :action pickup-table ?b
 :precondition
 (on-table ?b)
 (clear ?b)
 (arm-empty)
 :effect
 (holding ?b)
 (not (on-table ?b))
 (not (arm-empty))
Planning Input: Initial State

- (on-table a) (on-table b)
- (arm-empty)
- (clear c) (clear b)
- (on c a)

- All other propositions false
 - not mentioned \(\rightarrow\) false
Planning Input: Goal

- (on-table c) AND (on b c) AND (on a b)

- Is this a state?

- In planning a goal is a set of states
Planning Input Representation

• Description of initial state of world
 Set of propositions

• Description of goal: i.e. set of worlds
 E.g., Logical conjunction
 Any world satisfying conjunction is a goal

• Description of available actions
Planning vs. Problem-Solving

Basic difference: Explicit, logic-based representation

• **States/Situations**: descriptions of the world by logical formulae
 → agent can explicitly reason about and communicate with the world.

• **Goal conditions** as logical formulae vs. goal test (black box)
 → agent can reflect on its goals.

• **Operators/Actions**: Axioms or transformation on formulae in a logical form
 → agent can gain information about the effects of actions by inspecting the operators.
Complexity of Planning Problems

Environment

- Static vs. Dynamic
- Deterministic vs. Stochastic
- Fully Observable vs. Partially Observable
- Perfect vs. Noisy

Percepts

What action next?

Actions

Full vs. Partial satisfaction
Classical Planning

Environment

- Static
- Fully Observable
- Deterministic
- Perfect

What action next?

Perceps

Actions

- Full
Actions in Classical Planning

- **Simplifying assumptions**
 Atomic time
 Agent is omniscient (no sensing necessary).
 Agent is sole cause of change
 Actions have deterministic effects

- **STRIPS representation**
 World = set of true propositions (conjunction)
 Actions:
 - Precondition: (conjunction of positive literals, no functions)
 - Effects (conjunction of literals, no functions)
 Goal = conjunction of positive literals

Is Blocks World in STRIPS?

Goals = conjunctions (Rich ^ Famous)
Forward World-Space Search

Initial State

Goal State
Forward State-Space Search

- **Initial state:** set of positive ground literals (CWA: literals not appearing are false)
- **Actions:**
 - applicable if preconditions satisfied
 - add positive effect literals
 - remove negative effect literals
- **Goal test:** checks whether state satisfies goal
- **Step cost:** typically 1
Heuristics for State-Space Search

• Count number of false goal propositions in current state
 Admissible? NO

• Subgoal independence assumption:
 Cost of solving conjunction is sum of cost of solving each subgoal independently
 Optimistic: ignores negative interactions
 Pessimistic: ignores redundancy

 Admissible? No
 Can you make this admissible?
Heuristics for State Space Search (contd)

- Delete all preconditions from actions, solve easy relaxed problem, use length

 Admissible?
 YES

- Delete negative effects from actions, solve easier relaxed problem, use length

 Admissible?
 YES (if Goal has only positive literals, true in STRIPS)
Complexity of Planning

• Size of Search Space
 size of world state space

• Size of World state space
 exponential in problem representation

• What to do?
 Informative heuristic that can be computed in polynomial time!

© D. Weld, D. Fox
Planning Graph: Basic idea

• Construct a planning graph: encodes constraints on possible plans

• Use this planning graph to constrain search for a valid plan (GraphPlan Algorithm):
 If valid plan exists, it’s a subgraph of the planning graph

• Use this planning graph to compute an informative heuristic (Forward A*)

• Planning graph can be built for each problem in polynomial time
The Planning Graph

Note: a few noops missing for clarity
Graph Expansion

Proposition level 0
- initial conditions

Action level i
- no-op for each proposition at level i-1
- action for each operator instance whose preconditions exist at level i-1

Proposition level i
- effects of each no-op and action at level i
Mutual Exclusion

Two actions are mutex if
• one clobbers the other’s effects or preconditions
• they have mutex preconditions

Two proposition are mutex if
• one is the negation of the other
• all ways of achieving them are mutex
Dinner Date

Initial Conditions: (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:

 (:operator carry :precondition
 :effect (:and (noGarbage) (:not (cleanHands))))

 (:operator dolly :precondition
 :effect (:and (noGarbage) (:not (quiet))))

 (:operator cook :precondition (cleanHands)
 :effect (dinner))

 (:operator wrap :precondition (quiet)
 :effect (present))
Planning Graph

- noGarb
- carry
- cleanH
- dolly
- quiet
- cook
- wrap
- dinner
- present

0 Prop 1 Action 2 Prop 3 Action 4 Prop
Are there any exclusions?

- noGarb
- carry
- cleanH
- dolly
- cook
- wrap
- dinner
- present

0 Prop 1 Action 2 Prop 3 Action 4 Prop
Observation 1

Propositions monotonically increase
(always carried forward by no-ops)
Observation 2

Actions monotonically increase
Observation 3

Proposition mutex relationships monotonically decrease
Observation 4

Action mutex relationships monotonically decrease
Observation 5

Planning Graph ‘levels off’.

- After some time k all levels are identical
- Because it’s a finite space, the set of literals never decreases and mutexes don’t reappear.
Properties of Planning Graph

• If goal is absent from last level
 Goal cannot be achieved!
• If there exists a path to goal
 goal is present in the last level

• If goal is present in last level
 there may not exist any path still
 extend the planning graph further
Heuristics based on Planning Graph

- Construct planning graph starting from s
 - $h(s) = \text{level at which goal appears non-mutex}$
 - Admissible? YES

- Relaxed Planning Graph Heuristic
 - Remove negative preconditions build plan. graph
 - Use heuristic as above
 - Admissible? YES
 - More informative? NO
 - Speed: FASTER