Planning

CSE 473
AIMA, 10.3 and 11

Overview

- FOL Planning in Situation Calculus
- Planning vs. Problem Solving
- STRIPS Formalism
- Partial Order Planning
- GraphPlan
- SATPlan

FOL Planning: Situation Calculus

- **Situations**: Logical description of world at some point in time
 - \(\text{Result}(a, s) \) returns next state / situation

- **Fluents**: Functions and predicates that change over time
 - \(\text{Holding}(G_1, S_4) \)

- **Atemporal**: Static functions and predicates
 - \(\text{Gold}(G_1) \)

Situation Calculus

- \(\text{Result}([], s) = s \)
- \(\text{Result}([a|seq], s) = \text{Result}(seq, \text{Result}(a, s)) \)
Situation Calculus

- **Projection task**: Deduce outcome of sequence of actions
- **Planning task**: Find sequence of actions that achieves desired effect

Examples:
- At(Agent, [1,1], S_0) \land At(G_1, [1,2], S_0) \land \neg Holding(G_1, S_0)
- Gold(G_1) \land Adjacent([1,1], [1,2]) \land Adjacent([1,2], [1,1])

Situation Calculus

- **Projection / prediction / verification**:
 - At(G_1, [1,1], Result([Go([1,1],[1,2]), Grab(G_1), Go([1,2],[1,1])], S_0))

- **Planning**:
 - \exists seq At(G_1, [1,1], Result(seq, S_0))

Actions in Situation Calculus

- **Possibility axioms**:
 - At(Agent, x, s) \land Adjacent(x,y) \Rightarrow Poss(Go(x,y),s)
 - Gold(g) \land At(Agent,x,s) \land At(g, x, s) \Rightarrow Poss(Grab(g),s)

- **Effect axioms**:
 - Poss(Go(x,y),s) \Rightarrow At(Agent, y, Result(Go(x,y),S))
 - Poss(Grab(g),s) \Rightarrow Holding(g, Result(Grab(g),S))
 - Poss(Release(g),s) \Rightarrow \neg Holding(g, Result(Release(g),S))

- **Can prove now**:
 - At(Agent, [1,2], Result(Go([1,1],[1,2]), S_0))
 - Can't show: At(G_1, [1,2], Result(Go([1,1],[1,2]), S_0))

Frame Problem

- **How to handle the things that are NOT changed by an action?**
- A actions, E effects per action, F fluents
- **Representational frame problem**: Size of knowledge base should depend on number of actions and effects, not fluents: O(AE)
- **Inferential frame problem**: Updates / prediction of t steps in O(Et) time
Representational Frame Problem

- Naive solution $O(AF)$:
 - $At(o,x,s) \land (o \neq \text{Agent}) \land \neg Holding(o,s) \Rightarrow At(o,x,\text{Result}(\text{Go}(y,z),s))$

- Successor-state axioms (Ray Reiter, '91) $O(AE,F)$:
 - Action possible \Rightarrow
 - fluent true in result state \Leftrightarrow Action’s effect made it true
 - \vee It was true before and action didn’t change it
 - $Poss(a,s) \Rightarrow$
 - $At(\text{Agent},y,\text{Result}(a,s) \Leftrightarrow a = \text{Go}(x,y))$
 - $\vee At(\text{Agent},y,s) \land a \neq \text{Go}(y,z))$
 - $Poss(a,s) \Rightarrow$
 - $F(\text{Result}(a,s)) \Leftrightarrow (a = A_1 \vee a = A_2 \vee \ldots)$
 - $\vee F(s) \land a \neq A_1 \land a \neq A_2 \ldots$
Input Representation

• Description of initial state of world
 E.g., Set of propositions:
 (block a) (block b) (block c) (on-table a) (on-table b) (clear a) (clear b) (clear c) (arm-empty))

• Description of goal: i.e. set of worlds
 E.g., Logical conjunction
 Any world satisfying conjunction is a goal
 (and (on a b) (on b c))

• Description of available actions

Planning vs. Problem-Solving

Basic difference: Explicit, logic-based representation

• States/Situations: descriptions of the world by
 logical formulae vs. data structures
 → agent can explicitly reason about and communicate
 with the world.

• Goal conditions as logical formulae vs. goal test (black box)
 → agent can reflect on its goals.

• Operators: Axioms or transformation on formulae vs.
 modification of data structures by programs
 → agent can gain information about the effects of
 actions by inspecting the operators.

Searching in State Space

We could search through the state space and thereby
reduce planning to searching.
We can search forwards (progression planning):

Or alternatively, we can start at the goal and work backwards (regression planning).
Possible since the operators provide enough information

Ways to make “plans”

Generative Planning
 Reason from first principles (knowledge of actions)
 Requires formal model of actions

Case-Based Planning
 Retrieve old plan which worked on similar problem
 Revise retrieved plan for this problem

Reinforcement Learning
 Act “randomly” - noticing effects
 Learn reward, action models, policy
Simplifying Assumptions

- **Environment**
 - Static vs. Dynamic
 - Fully Observable vs. Partially Observable
 - Deterministic vs. Stochastic
 - Instantaneous vs. Durative

- **Percepts**
 - What action next?

- **Actions**

- **What action next?**

- **Classical Planning**

- **Environment**
 - Static
 - Fully Observable
 - Instantaneous
 - Perfect

- **I** = initial state
- **G** = goal state
- **O**

How Represent Actions?

- **Simplifying assumptions**
 - Atomic time
 - Agent is omniscient (no sensing necessary).
 - Agent is sole cause of change
 - Actions have deterministic effects

- **STRIPS representation**
 - World = set of true propositions (conjunction)
 - Actions:
 - Precondition: (conjunction of positive literals, ground, no functions)
 - Effects (conjunction of literals, ground, no function)
 - Goals = conjunctions (Rich ^ Famous)

STRIPS Actions

- **Action** = function: worldState → worldState
- **Precondition**
 - says where function defined
- **Effects**
 - say how to change set of propositions

```
north11
precond: (and (agent-at 1 1))
effect: (and (agent-at 1 2)
          (not (agent-facing north)))
```

```
W0 north11 W1
```
Action Schemata

- Instead of defining:
 `pickup-A` and `pickup-B` and ...
- Define a schema:
  ```
  (:operator pick-up
   :parameters ((block ?ob1))
   :precondition (and (clear ?ob1)
                    (on-table ?ob1)
                    (arm-empty))
   :effect (and (not (clear ?ob1))
             (not (on-table ?ob1))
             (not (arm-empty))
             (holding ?ob1)))
  ```

Forward State-Space Search

- Progression planning
- Initial state: set of positive ground literals (CWA: literals not appearing are false)
- Actions:
 - applicable if preconditions satisfied
 - add positive effect literals
 - remove negative effect literals
- Goal test: checks whether state satisfies goal
- Step cost: typically 1

Backward State-Space Search

- Regression planning
- Problem: Need to find predecessors of state
- Problem: Many possible goal states are equally acceptable.
- From which one does one search?

Initial State is completely defined

Regression

- Let G be a KR sentence (e.g. in logic)
- Relevance: needs to achieve one subgoal
- Consistency: does not undo any other subgoal
- Regressing a goal, G, thru an action, A
 yields the weakest precondition G'
 Such that: if G' is true before A is executed
 G is guaranteed to be true afterwards
Regession Example

\[
G' \xrightarrow{\text{precondition}} A \xrightarrow{\text{effect}} G
\]

\[
\begin{align*}
\text{pick-up} &: \text{parameters}((\text{block ?ob1})) \\
\text{precondition} &: (\text{and} (\text{clear ?ob1}) \\
& \quad \quad \quad (\text{on-table ?ob1}) \\
& \quad \quad \quad (\text{arm-empty})) \\
\text{effect} &: (\text{and} (\text{not (clear ?ob1)}) \\
& \quad \quad \quad (\text{not (on-table ?ob1)}) \\
& \quad \quad \quad (\text{not (arm-empty)}) \\
& \quad \quad \quad (\text{holding ?ob1}))
\end{align*}
\]

Heuristics for State-Space Search

- Subgoal independence assumption:
 Cost of solving conjunction is sum of cost of solving each subgoal independently
 Optimistic: ignores negative interactions
 Pessimistic: ignores redundancy

- Relaxed problems:
 Remove all preconditions from actions and assume subgoal independence → heuristic is number of unsatisfied goals
 Remove preconditions and negative effects:
 - Goal\(A \land B \land C\)
 - Action(X, Effect: \(A^P\))
 - Action(Y, Effect: \(B^C \land Q\))
 - Action(Z, Effect: \(B^P \land Q\))

Plan = Sequence of Actions?

Searching in Plan Space

- Instead of searching in state space, can search in space of all plans.
- Initial state is partial plan containing only start and goal states:

\[
\begin{array}{cccc}
\text{Start} & \text{Initial} & \text{Goal} & \text{Finish} \\
\text{Left Shoe} & \text{Left Shoe} & \text{Left Shoe} & \text{Left Shoe} \\
\text{Right Shoe} & \text{Right Shoe} & \text{Right Shoe} & \text{Right Shoe} \\
\text{Finish} & \text{Finish} & \text{Finish} & \text{Finish}
\end{array}
\]

Goal state is a complete plan that solves the given problem:
Representation of Partial Order (Non-Linear) Plans

During search, plan is represented by sets of
- actions (empty plan is Start and Finish only)
- ordering constraints (A<B: A before B)
- causal links $A_i \rightarrow A_j$ means "A_i produces the precondition c for A_j"
- open preconditions (not yet achieved preconditions)
- variable assignments $x = t$, where x is a variable and t is a constant or a variable.
- Solutions to planning problems must be complete and consistent.

Completeness and Consistency

Complete: Every precondition of every step is fulfilled
Consistent: No cycles in ordering constraints and no conflicts with causal links

Shoe example solution:
- Actions: {RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}
- Orderings: {RightSock < RightShoe, LeftSock < LeftShoe}
- Links: {RightSock \rightarrow RightShoe, LeftSock \rightarrow LeftShoe, RightShoe \rightarrow Finish, LeftShoe \rightarrow Finish}
- OpenPreconditions: {}

Searching in Plan Space

- Successor function: (plan refinement)
 - pick open precondition p and check all actions that generate p
 - consistency:
 - add causal link and ordering constraint(s)
 - check whether there are potential conflicts (clobberers) and try to protect violated links
- Goal test: No open preconditions

Protection of Causal Links

(a) Conflict: S_1 threatens the causal link between S_1 and S_2.
Conflict solutions:
 (b) Demotion: Place threatening step before causal link
 (c) Promotion: Place threatening step after causal link
Blocks World Example

"Russell anomaly" problem

Start State

Clear(x) On(x,z) Clear(y)

PutOn(x,y)

~On(x,z) ~Clear(y)

Clear(z) On(x,y)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

Goal State

Clear(x) On(x,z)

PutOnTable(x)

On(A,B) On(B,C)

Finish

Blocks World Example

START

On(C,A) On(A,Table) C(B) On(B,Table) C(C)

C(B) On(B,Table) C(C)

PutOn(B,C)

On(A,B) On(B,C)

Finish

Blocks World Example

START

On(C,A) On(A,Table) C(B) On(B,Table) C(C)

C(B) On(B,Table) C(C)

PutOn(B,C)

On(A,B) On(B,C)

Finish

Blocks World Example

START

On(C,A) On(A,Table) C(B) On(B,Table) C(C)

C(B) On(B,Table) C(C)

PutOn(B,C)

On(A,B) On(B,C)

Finish
POP Algorithm

Correctness: Every result of the POP algorithm is a complete, correct plan.

Completeness: If breadth-first-search is used, the algorithm finds a solution, given one exists.

GraphPlan: Basic idea

- Construct a graph that encodes constraints on possible plans
- Use this "planning graph" to constrain search for a valid plan:
 - If valid plan exists, it's a subgraph of the planning graph
- Planning graph can be built for each problem in polynomial time

Problems handled by GraphPlan*

- Pure STRIPS operators:
 - conjunctive preconditions
 - no negated preconditions
 - no conditional effects
 - no universal effects
- Finds "shortest parallel plan"
- Sound, complete and will terminate with failure if there is no plan.

*Version in [Blum & Furst IJCAI 95, AIJ 97], later extended to handle all these restrictions [Koehler et al 97]
Graphplan

- Phase 1 - Graph Expansion
 - Necessary (insufficient) conditions for plan existence
 - Local consistency of plan-as-CSP
- Phase 2 - Solution Extraction
 - Variables
 - action execution at a time point
 - Constraints
 - goals, subgoals achieved
 - no side-effects between actions

Graph Expansion

Proposition level 0
- initial conditions

Action level i
- no-op for each proposition at level i-1
- action for each operator instance whose preconditions exist at level i-1

Proposition level i
- effects of each no-op and action at level i

The Plan Graph

Mutual Exclusion

Two actions are mutex if
- one clobbers the other’s effects or preconditions
- they have mutex preconditions

Two proposition are mutex if
- one is the negation of the other
- all ways of achieving them are mutex
Graphplan

• Create level 0 in planning graph
• Loop
 If goal ⊆ contents of highest level (nonmutex)
 Then search graph for solution
 • If find a solution then return and terminate
 Else extend graph one more level

A kind of double search: forward direction checks necessary (but insufficient) conditions for a solution,...
Backward search verifies...

Searching for a Solution Plan

• Backward chain on the planning graph
• Achieve goals level by level
• At level k, pick a subset of non-mutex actions to achieve current goals. Their preconditions become the goals for k-1 level.
• Build goal subset by picking each goal and choosing an action to add. Use one already selected if possible. Do forward checking on remaining goals (backtrack if can’t pick non-mutex action)

Searching for a Solution

If goals are present & non-mutex:
Choose action to achieve each goal
Add preconditions to next goal set

Dinner Date

Initial Conditions: (:and (cleanHands) (quiet))
Goal: (:and (noGarbage) (dinner) (present))

Actions:
 (:operator carry :precondition
 :effect (:and (noGarbage) (:not (cleanHands))))
 (:operator dolly :precondition
 :effect (:and (noGarbage) (:not (quiet))))
 (:operator cook :precondition (cleanHands)
 :effect (dinner))
 (:operator wrap :precondition (quiet)
 :effect (present))
Searching Backwards

One (of 4) Possibilities

One (of 4) possibilities

Observation 1

Propositions monotonically increase (always carried forward by no-ops)
Observation 2

Actions monotonically increase

Observation 3

Proposition mutex relationships monotonically decrease

Observation 4

Action mutex relationships monotonically decrease

Observation 5

Planning Graph 'levels off'.
- After some time k all levels are identical
- Because it's a finite space, the set of literals never decreases and mutexes don't reappear.
The Last Word on Planning: SATPlan

- Idea: test the satisfiability of the logical sentence:
 \((\text{initial state}) \land (\text{all possible action descriptions for } t \text{ steps}) \land (\text{goal achieved at step } t)\)
- Create and test sentence for each \(t = 0, 1, 2, \ldots, T_{\text{max}}\)
- Action descriptions include:
 1. Successor-state axioms from situation calculus (superscript denotes \(t\))
 \[
 \text{At}(P1,JFK)^t \Rightarrow (\text{At}(P1,SFO)^0 \land \text{Fly}(P1,SFO,JFK)^t) \\
 \lor (\text{At}(P1,JFK)^t \land \neg \text{Fly}(P1,JFK,SFO)^t)
 \]
 2. Precondition axioms
 \[
 \text{Fly}(P1,SFO,JFK)^t \Rightarrow \text{At}(P1,SFO)^t
 \]
 \[
 \forall p, x, y, t \ (x = y) \Rightarrow \neg (\text{At}(p,x)^t \land \text{At}(p,y)^t)
 \]

Planning using SATPlan

- Sentence to be tested (for a particular \(t\)):
 \((\text{initial state}) \land (\text{all possible action descriptions}) \land (\text{goal})\)
- A model will assign true to actions that are part of correct plan and false to other actions.
 If no plan exists, sentence will be unsatisfiable.
- Use SAT solver such as DPLL or WalkSAT to test satisfiability (and find plan if one exists).
- SATPlan can handle large planning problems.
 E.g., Up to 30-step plans in blocks world.

Some Applications of Planning

- Assembly line planning at Hitachi
- Software procurement planning at Price Waterhouse
- Back-axle assembly planning at Jaguar Cars
- Logistics planning in the US Navy
- Scheduling mission-command sequences for satellites
- Observation planning for Hubble telescope
- Spacecraft control for Deep Space One probe
- Etc.

Planning Summary

- Problem solving algorithms that operate on explicit propositional representations of states and actions.
- Make use of specific heuristics.
- STRIPS: restrictive propositional language.
- State-space search: forward (progression) / backward (regression) search
- Partial order planners search space of plans from goal to start, adding actions to achieve goals.
- GraphPlan: Generates planning graph to guide backwards search for plan.
- SATPlan: Converts planning problem into propositional axioms. Uses SAT solver to find plan.