Knowledge Representation IV
Inference for First-Order Logic

CSE 473

FOL Reasoning

- Basics of FOL reasoning
- Classes of FOL reasoning methods
 - Forward & Backward Chaining
 - Resolution
 - Compilation to SAT

Basics: Universal Instantiation

- Universally quantified sentence:
 \(\forall x: \text{Monkey}(x) \land \text{Curious}(x) \rightarrow \text{Fuzzy}(x) \)
- Intuitively, \(x \) can be anything:
 \(\text{Monkey}(\text{George}) \land \text{Curious}(\text{George}) \rightarrow \text{Fuzzy}(\text{George}) \)
 \(\text{Monkey}(\text{Peter}) \land \text{Curious}(\text{Peter}) \rightarrow \text{Fuzzy}(\text{Peter}) \)
 \(\text{Monkey}(\text{DadOf}(\text{George})) \land \text{Curious}(\text{DadOf}(\text{George})) \rightarrow \text{Fuzzy}(\text{DadOf}(\text{George})) \)
- Formally:
 \(\forall x: S \)
 \(\text{Subst\{x/p\}, S} \)
 \(\forall x: \text{Monkey}(x) \rightarrow \text{Curious}(x) \)

Basics: Existential Instantiation

- Existentially quantified sentence:
 \(\exists x: \text{Monkey}(x) \land \neg\text{Curious}(x) \)
- Intuitively, \(x \) must name something. But what?
 \(??? \; \text{Monkey}(\text{George}) \land \neg\text{Curious}(\text{George}) \; ??? \)
 No! \(S \) might not be true for \(\text{George} \)!
- Use a Skolem Constant:
 \(\text{Monkey}(k) \land \neg\text{Curious}(k) \)
 ...where \(k \) is a completely new symbol
- Formally:
 \(\exists x: S \)
 \(\text{Subst\{x/k\}, S} \)
 \(\exists x: \text{Monkey}(x) \rightarrow \text{Curious}(x) \)
 \(\text{newGuy} \) is the Skolem constant
Basics: Generalized Skolemization

- What if our existential variable is nested?
 \(\forall x \exists y: \text{Monkey}(x) \rightarrow \text{HasTail}(x, y) \)
 \(??? \forall x: \text{Monkey}(x) \rightarrow \text{HasTail}(x, \text{skolemTail}) ??? \)

- Existential variables can be replaced by
 Skolem functions (or constants)
 Args to function are all surrounding \(\forall \) vars

 \(\forall d \exists t \ \text{has}(d, t) \)
 \(\forall d \ \text{has}(d, f(d)) \)

 \(\exists x \forall y \ \text{loves}(y, x) \)
 \(\forall y \ \text{loves}(y, f()) \)
 \(\forall y \ \text{loves}(y, f_{97}) \)

Basics: Unification

- What if we want to use modus ponens?
 \(a \land b \rightarrow c \)
 \(a \land b \)
 \(c \)

 \(\text{Fuzzy}(x) \land \text{Monkey}(x) \rightarrow \text{Curious}(x) \)
 \(\text{Fuzzy}(\text{George}) \land \text{Monkey}(\text{George}) \)
 ???

- Must **unify** our expressions

Unification

- Match up expressions by finding variable values that make the expressions identical
 Variables denoted \(?x\)

- \(\text{Unify}(x, y) \) returns "mgu"
 \(\text{Unify}(\text{city}(?a), \text{city}(\text{kent})) \) returns \(?a/\text{kent}\)

- \(\text{Substitute}(\text{expr}, \text{mapping}) \) returns new expr
 \(\text{Substitute}(\text{connected}(?a, ?b), (?a/\text{kent})) \)
 returns \(\text{connected}(\text{kent}, ?b)\)

Unification Examples I

- \(\text{Unify}(\text{road}(?a, \text{kent}), \text{road}(\text{seattle}, ?b)) \)
 Unification ok
 Returns \(?a/\text{seattle}, \ ?b/\text{kent}\)
 When substituted in both expressions, they match.
 Each is \(\text{road}(\text{seattle}, \text{kent})\)

- \(\text{Unify}(\text{road}(?a, ?a), \text{road}(\text{seattle}, \text{kent})) \)
 Impossible: \(?a\) can't be seattle and kent at the same time!
Unification Examples II

- Unify(f(g(?x, dog), ?y)), f(g(cat, ?y), dog)
 \(\{?x / \text{cat}, \ ?y / \text{dog}\} \)
- Unify(f(g(?x)), f(?x))
 They don't unify: no substitution makes them the same.
 E.g. consider: \(\{?x / g(?x)\} \)
 We get \(f(g(g(?x)))\) and \(f(g(?x))\) ... not equal!
- Thus: A variable value may not contain itself directly or indirectly.

Unification Examples III

- Unify(f(g(cat, dog), ?y)), f(?x), dog)
 \(\{?x / g(\text{cat, dog}), \ ?y / \text{dog}\} \)
- Unify(f(g(?y)), f(?x))
 \(\{?x / g(?y), \ ?y / ?y\} \)
- Back to fuzzy monkeys:
 \[\text{Fuzzy}(x) \land \text{Monkey}(x) \rightarrow \text{Curious}(x) \]
 \[\text{Fuzzy}(\text{George}) \land \text{Monkey}(\text{George}) \rightarrow \text{Curious}(\text{George}) \]
 Unify and then use modus ponens = generalized modus ponens

Inference I: Forward Chaining

- Given:
 \[\forall x \: \text{Monkey}(x) \land \text{Fuzzy}(x) \rightarrow \text{Curious}(x) \]
 \[\forall y \: \text{Fuzzy}(y) \]
 \[\text{Monkey}(\text{George}) \]

- The algorithm:
 Start with the KB
 Add any fact you can generate with GMP
 Repeat until: goal reached or generation halts.
- Sound? Complete? Decidable?
- Speed concerns?
 Unification; premise rechecking; irrelevant fact gen.

Inference II: Backward Chaining

- Given:
 \[\forall x \: \text{Monkey}(x) \land \text{Fuzzy}(x) \rightarrow \text{Curious}(x) \]
 \[\forall y \: \text{Fuzzy}(y) \]
 \[\text{Monkey}(\text{George}) \]

- The algorithm:
 Start with KB and goal.
 Find all rules whose results unify with the goal:
 Add the bodies of these rules to the goal list
 Remove the corresponding result from the goal list
 Stop when:
 Goal list is empty (SUCCEED)
 Progress halts (FAIL)
First-Order Resolution

- **Answers**: Is it the case that $\Sigma \models \Phi$?
- **Method**
 - Let $S = KB \land \neg \text{goal}$
 - Convert S to clausal form
 - Standardize variables
 - Move quantifiers to front, skolemize to remove \exists
 - Replace \Rightarrow with \lor and \land
 - Demorgan’s laws to get CNF (ands-of-ors)
 - Resolve S goal until get empty clause

First-Order Resolution Example

- **Given**

 $\forall x \text{ man}(?x) \Rightarrow \text{human}(?x)$
 $\forall x \text{ woman}(?x) \Rightarrow \text{human}(?x)$
 $\forall x \text{ prof}(?x) \Rightarrow \text{man}(?x) \lor \text{woman}(?x)$
 $\text{prof}(\text{dieter})$

- **Prove**

 $\text{human}(\text{dieter})$

\[-m(?x),h(?x)] \ [\neg w(?y), \ h(?y)] \ [\neg p(?z), m(?z), w(?z)] \ [p(d)\neg h(d)]
Example Continued

\[
\begin{align*}
[m(?x), h(?x)] & \quad [-w(?y), h(?y)] \\
[-p(?z), m(?z), w(?z)] & \quad [p \ (d)] \quad [-h(d)] \\
\end{align*}
\]

Resolution Example 2

Given

\[
\forall ?p \exists ?f \quad A(?p) \Rightarrow A(?f) \\
A(\text{joe})
\]

Prove

\[
\forall ?p \ A(?p) \Rightarrow A(F(?p)) \\
\begin{array}{c}
(\neg A(?p), A(F(?p))) \\
A(\text{joe}) \\
A(sally)
\end{array}
\]

Inference IV:
Compilation to Prop. Logic

- Sentence S:
 \[
 \forall \text{city} \ a, b \ \text{connected}(a, b)
 \]
- Universe
 Cities: seattle, tacoma, enumclaw
- Equivalent propositional formula:
 \[
 Cst \land Cse \land Cts \land Cte \land Ces \land Cet
 \]

Compilation to Prop. Logic (cont)

- Sentence S:
 \[
 \exists \text{city} \ c \ \text{biggest}(c)
 \]
- Universe
 Cities: seattle, tacoma, enumclaw
- Equivalent propositional formula:
 \[
 Bs \lor Bt \lor Be
 \]
Compilation to Prop. Logic
(cont again)

- Universe
 - Cities: seattle, tacoma, enumclaw
 - Firms: IBM, Microsoft, Boeing
- First-Order formula
 \[\forall_{\text{firm } f} \exists_{\text{city } c} \text{HeadQuarters}(f, c) \]
- Equivalent propositional formula
 \[\left(\text{HQis} \lor \text{HQit} \lor \text{HQie} \right) \land \]
 \[\left(\text{HQms} \lor \text{HQmt} \lor \text{HQme} \right) \land \]
 \[\left(\text{HQbs} \lor \text{HQbt} \lor \text{HQbe} \right) \]

Hey!

- You said FO Inference is semi-decidable
- But you compiled it to SAT
 Which is NP Complete
- So now we can always do the inference?!?
 Tho it might take exponential time...
- Something seems wrong here....????

Compilation to Prop. Logic
(cont for the last time)

- Universe
 - People: homer, bart, marge
- First-Order formula
 \[\forall_{\text{people } p} \text{Male(FatherOf}(p)) \]
- Equivalent propositional formula
 \[\left(\text{Mfather-homer} \land \text{Mfather-bart} \land \text{Mfather-marge} \right) \land \]
 \[\left(\text{Mfather} - \text{father-homer} \land \text{Mfather} - \text{father-bart} \land \ldots \right) \]
 \[\left(\text{Mfather} - \text{father-homer} \land \ldots \right) \]

Restricted Forms of FO Logic

- Known, Finite Universes
 Compile to SAT
- Frame Systems
 Ban certain types of expressions
- Horn Clauses (at most one negative literal)
 Aka Prolog
- Function-Free Horn Clauses
 Aka Datalog
Back To the Wumpus World

• Recall description:
 Squares as lists: [1,1] [3,4] etc.
 Square adjacency as binary predicate.
 Pits, breezes, stenches as unary predicates:
 Pit(x)
 Wumpus, gold, homes as functions:
 WumpusHome(x)

Back To the Wumpus World

• "Squares next to pits are breezy":
 \(\forall x, y, a, b: \)
 \(\text{Pit}([x, y]) \land \text{Adjacent}([x, y], [a, b]) \rightarrow \text{Breezy}([a, b]) \)

• "Breezes happen only and always next to pits":
 \(\forall a, b \)
 \(\text{Breezy}([a, b]) \iff \exists x, y \text{Pit}([x, y]) \land \text{Adjacent}([x, y], [a, b]) \)

Back To the Wumpus World

• Given:
 \(\forall a, b \)
 \(\text{Breezy}([a, b]) \iff \exists x, y \text{Pit}([x, y]) \land \text{Adjacent}([x, y], [a, b]) \)
 \(\text{Breezy}([1,2]) \)

• Prove:
 \(\text{Pit}([3,2]) \lor \text{Pit}([2,2]) \)

Back To the Wumpus World

• What About Our Agent?
 • Still don’t know how to deal with time
 • Still don’t know how to go from knowledge of the world to action in the world
 \(\rightarrow \) Planning