Inference in Propositional Logic (and Intro to SAT)

CSE 473

Today

- Inference Algorithms
 - As search
 - Systematic & stochastic
 - Themes
 - Expressivity vs. Tractability

Reasoning Tasks

- Model finding (SAT)
 - KB = background knowledge
 - S = description of problem
 - Show (KB \land S) is satisfiable
 - A kind of constraint satisfaction

- Deduction
 - S = question
 - Prove that KB \models S
 - Two approaches:
 1. Rules to derive new formulas from old
 2. Show (KB \land \neg S) is unsatisfiable

Inference 1: Forward Chaining

Forward (& Backward) Chaining

Based on rule of *modus ponens*

If know P_1 \ldots P_n & know (P_1 \land \ldots \land P_n) \Rightarrow Q

Then can conclude Q

Pose as Search through Problem Space?
- States?
- Operators?

Is it sound? Complete?
- Model finding (SAT), or deduction (proof)?
Special Syntactic Forms: CNF

• General Form:
 \(((q \land \neg r) \rightarrow s)) \land \neg (s \land t)\)

• Conjunctive Normal Form (CNF)
 \((\neg q \lor r \lor s) \land (\neg s \lor \neg t)\)
 Set notation: \{ (\neg q, r, s), (\neg s, \neg t) \}
 empty clause () = false

Inference 2: Resolution [Robinson 1965]

\{ (p \lor \alpha), (\neg p \lor \beta \lor \gamma) \} \vdash (\alpha \lor \beta \lor \gamma)

Correctness
If S1 \vdash R S2 then S1 \models S2
Refutation Completeness:
If S is unsatisfiable then S \vdash ()

Resolution
If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned.
Prove: the unicorn is horned.

M = mythical
I = immortal
A = mammal
H = horned

\((-A \lor H)\) \quad \((-H)\) \quad \((-I \lor H)\)
\((M \lor A)\) \quad \((-A)\) \quad \((-I)\)
\((M)\) \quad \((-M)\)
\(0\)

Inference 3: Model Enumeration

Enumerate every possible world \(w\).
For each \(w\):
 Check whether \(S\) is true in \(w\).
 If yes, we’re done \(\rightarrow\) \(S\) is satisfiable.
 If no \(w\) satisfies \(S\), \(S\) is unsatisfiable.

Model finding, or deduction?
View as Search?
Critique?
Inference 4: DPLL
(Enumeration of Partial Models)
[Davis, Putnam, Loveland & Logemann 1962]

Version 1

dpll(pa){
 if (pa makes F unsatisfiable) return false;
 if (pa is a full assignment) return true;
 choose P in F;
 if (dpll(pa U {P=0})) return true;
 return dpll(pa U {P=1});
}

Returns true if F is satisfiable, false otherwise

Improving DPLL

• We can intelligently rearrange our clauses at each step of the search to improve speed:
 - Remove clauses containing true literals.
 - Remove false literals from remaining clauses.

DPLL Version 1

(a ∨ b ∨ c)
(a ∨ ¬b)
(a ∨ ¬c)
(¬a ∨ c)

Improving DPLL

• Unit Literals
 A literal that appears in a singleton clause
 \{(¬b)\}
 Might as well set it true! And simplify
 \{(¬b)\} (a → b)[(d b)]
 \{(d)\}

• Pure Literals
 A symbol that always appears with same sign
 \{a → b\} (¬c d → e)(¬a → b)[d b][e a → c]
 Might as well set it true! And simplify
 \{(a → b)\} (¬a → b) e (a → c)
Heuristic Search in DPLL

- Heuristics are used in DPLL to select a (non-unit, non-pure) proposition for branching.
- Idea: identify a most constrained variable likely to create many unit clauses.
- MOM’s heuristic: Most occurrences in clauses of minimum length.
- Can we eliminate the exponential search time?

Success of DPLL

- 1962 - DPLL invented
- 1992 - 300 propositions
- 1997 - 600 propositions (satz)
- 2002 - 1,000,000 propositions (zChaff)

Chaff - fastest complete SAT solver
Created by 2 Princeton undergrads, for a summer project!

Inference 5: WalkSat

- Local search over space of complete truth assignments
 - With probability P: flip any variable in any unsatisfied clause.
 - With probability $(1-P)$: flip best variable in any unsat clause.
 - Like fixed-temperature simulated annealing.
- Faster than DPLL.
- Completeness?
Random 3-SAT Performance

- Random 3-SAT
 sample uniformly from space of all possible 3-clauses
 \(n \) variables, \(m \) clauses

Which are the hard instances?
around \(m/n = 4.3 \)

Random 3-SAT

- Varying problem size, \(n \)

- Complexity peak appears to be largely invariant of algorithm
 - backtracking algorithms like DPLL
 - local search procedures like WALKSAT

- What’s so special about 4.3?

Real-World Phase Transition Phenomena

- Many NP-hard problem distributions show phase transitions
 - job shop scheduling problems
 - TSP instances from TSPLib
 - exam timetables @ Edinburgh
 - Boolean circuit synthesis
 - Latin squares (aka sports scheduling)

- Hot research topic: predicting hardness of a given instance, & using hardness to control search strategy (Horvitz, Kautz, Ruan 2001-3)
Summary: Algorithms

- Forward Chaining
- Resolution
- Model Enumeration
- Enumeration of Partial Models (DPLL)
- Walksat

Analysis of Propositional Logic
Inference / SAT

- Expressiveness?
 Expressive but awkward
 No notion of objects, properties, or relations
 Number of propositions is fixed

- Tractability
 NP-Complete in general
 Completeness / speed tradeoff
 Horn clauses, binary clauses are special,
 more efficient cases