Knowledge Representation I (Propositional Logic)

Some KR Languages

- Propositional Logic
- Predicate Calculus
- Frame Systems
- Rules with Certainty Factors
- Bayesian Belief Networks
- Influence Diagrams
- Semantic Networks
- Concept Description Languages
- Nonmonotonic Logic

In Fact...

- All popular knowledge representation systems are equivalent to (or a subset of) Logic
 - Either Propositional Logic
 - Or Predicate Calculus
- Probability Theory

473 Topics

- Inference
- Logic
- Knowledge Representation
- Supervised Learning
- Reinforcement Learning
- Planning
- Search
- Problem Spaces
- Agency
- Perception
- NLP
- Robotics
- Multi-agent
- Probability
Knowledge bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system): Tell it what it needs to know

Then it can ask itself what to do - answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Wumpus World PEAS description

- Performance measure:
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- Environment:
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square

Wumpus world characterization

- Fully Observable?
- Deterministic?
- Episodic?
- Static?
- Discrete?
- Single-agent?
Wumpus world characterization

- **Fully Observable** No - only local perception
- **Deterministic** Yes - outcomes exactly specified
- **Episodic** No - sequential at the level of actions
- **Static** Yes - Wumpus and Pits do not move
- **Discrete** Yes
- **Single-agent** Yes - Wumpus is essentially a natural feature
Exploring a wumpus world

Logic in general

• Logics are formal languages for representing information such that conclusions can be drawn
 • Syntax defines the sentences in the language
 • Semantics define the "meaning" of sentences:
 • i.e., define truth of a sentence in a world

Entailment

• Entailment means that one thing follows from another:
 \[\text{KB} \models \alpha \]

• Knowledge base \(\text{KB} \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(\text{KB} \) is true

 E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"

 E.g., \(x+y = 4 \) entails \(4 = x+y \)

 Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

• Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

 We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \)

 \(M(\alpha) \) is the set of all models of \(\alpha \)

 Then \(\text{KB} \models \alpha \) iff \(M(\text{KB}) \subseteq M(\alpha) \)

 E.g. \(\text{KB} = \text{Giants won and Reds won} \) entails \(\alpha = \text{Giants won} \)
Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for \(KB \) (only pits)

3 Boolean choices \(\Rightarrow \) 8 possible models

\(KB = \) wumpus-world rules + observations

\(KB \models \alpha \), proved by model checking
Wumpus models

- KB = wumpus-world rules + observations

$\alpha_2 = \{2,2\}$ is safe, $KB \models \alpha_2$

Missing Elements

- How does an agent reason about the wumpus world?
- How do we map truth/information between the real (wumpus) world and our representation?

Inference
- How do we map truth/information between the real (wumpus) world and our representation?

Semantics
Inference

- \(KB \models a \) = sentence \(a \) can be derived from \(KB \) by procedure \(i \)
- **Soundness**: \(i \) is sound if whenever \(KB \models a \), it is also true that \(KB \models a \)
- **Completeness**: \(i \) is complete if whenever \(KB \models a \), it is also true that \(KB \models a \)
- **Preview**: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
 - That is, the procedure will answer any question whose answer follows from what is known by the \(KB \).

Semantics

- **Syntax**: a description of the legal arrangements of symbols (Def "sentences")
- **Semantics**: what the arrangement of symbols means in the world

Propositional Logic

- **Syntax**: Atomic sentences: True, False, \(P, Q, \ldots \)
 - Connectives: \(\land, \lor, \neg, \Rightarrow \)
- **Semantics**: Truth Tables
- **Inference**:
 - Modus Ponens
 - Resolution
 - DPLL
 - GSAT
Propositional Logic: **SEMANTICS**

- "Interpretation" (or "possible world")
 - Assignment to each variable either T or F
 - Assignment of T or F to each connective via defns

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>Q</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

P ∨ Q

P ∧ Q

¬P

Wumpus world sentences

- Let $P_{i,j}$ be true if there is a pit in [i, j].
- Let $B_{i,j}$ be true if there is a breeze in [i, j].

$\neg P_{1,1}$

$\neg B_{1,1}$

$B_{2,1}$

- "Pits cause breezes in adjacent squares"

$B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$

$B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$

Truth tables for inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>KB</th>
<th>α_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

$\alpha_1 = "[1,2] is safe"$

Validity and satisfiability

A sentence is valid if it is true in all models:

- e.g., True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:

$KB \vdash \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model:

- e.g., $A \lor B$, $A \land B$

A sentence is unsatisfiable if it is true in no models:

- e.g., $A \lor \neg A$

Satisfiability is connected to inference via the following:

$KB \vdash \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable