CSE 473
Artificial Intelligence

Dieter Fox
Colin Zheng

www.cs.washington.edu/education/courses/cse473/08au

Goals of this Course

• To introduce you to a set of key:
 Paradigms &
 Techniques

• Teach you to identify when & how to use
 Agents & Problem Spaces
 Heuristic search
 Constraint satisfaction
 Knowledge representation
 Planning
 Uncertainty
 Machine learning
 Dynamic Bayesian networks & particle filters
 Robotics

AI as Science

Where did the physical universe come from? And what laws guide its dynamics?

How did biological life evolve? And how do living organisms function?

What is the nature of intelligent thought?

AI as Engineering

• How can we make software systems more powerful and easier to use?

 Speech & intelligent user interfaces
 Autonomic computing
 Mobile robots, softbots & immobots
 Data mining
 Medical expert systems...
What is Intelligence?

Hardware

- 10^{11} neurons
- 10^{14} synapses
- cycle time: 10^{-3} sec

- 10^8 transistors
- 10^{12} bits of RAM
- cycle time: 10^{-8} sec

Computer vs. Brain

Evolution of Computers
Projection

• In the near future computers will have
 As many processing elements as our brain,
 But far fewer interconnections
 Much faster updates.

• Fundamentally different hardware
 Requires fundamentally different algorithms!
 Very much an open question.

Dimensions of the AI Definition

<table>
<thead>
<tr>
<th>thought vs. behavior</th>
<th>human-like vs. rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems that think like humans</td>
<td>Systems that think rationally</td>
</tr>
<tr>
<td>Systems that act like humans</td>
<td>Systems that act rationally</td>
</tr>
</tbody>
</table>

Mathematical Calculation

\[
\begin{align*}
 e^{-\beta s} (\partial_x^2 - \partial_t^2) u(s) &= - \left[E' - \left(l + \frac{1}{2} \right)^2 e^{-2s} - e^{2s} \right] u(s) \\
 e^{-\beta s} \left(e^{-\beta u(s)} \right)' &= \frac{1}{2} u(s) \\
 e^{-2s} \left(e^{-\beta u(s)} \right)' &= - \left[E' - \left(l + \frac{1}{2} \right)^2 e^{-2s} - e^{2s} \right] u(s) \\
 u' &= - e^{2s} \left[E' - \left(l + \frac{1}{2} \right)^2 e^{-2s} - e^{2s} \right] u
\end{align*}
\]

State of the Art

“I could feel – I could smell – a new kind of intelligence across the table”
-Gary Kasparov

Saying Deep Blue doesn’t really think about chess is like saying an airplane doesn’t really fly because it doesn’t flap its wings.
– Drew McDermott
Autonomous Systems

- In the 1990's there was a growing concern that work in classical AI ignored crucial scientific questions:
 - How do we integrate the components of intelligence (e.g., learning & planning)?
 - How does perception interact with reasoning?
 - How does the demand for real-time performance in a complex, changing environment affect the architecture of intelligence?

RoboCup

- Provide a standard problem where a wide range of technologies can be integrated and examined.
- By 2050, develop a team of fully autonomous humanoid robots that can win against the human world champion team in soccer.
Software Robots (softbots)

- Softbots: 'intelligent' program that uses software tools on a person's behalf.
- Sensors = LS, Google, etc.
- Effectors = RM, ftp, Amazon.com
- Software: not physical but not simulated.
- Active: not a help system (softbot safety!)

Deep Space One

Started: January 1996
Launch: October 15th, 1998
Experiment: May 17-21

courtesy JPL

Compiled into 2,000 variable SAT problem
Real-time planning and diagnosis

2004 & 2009
Europa Mission ~ 2018

Limits of AI Today

• Today's successful AI systems
 operate in well-defined domains
 employ narrow, specialize knowledge

• Commonsense Knowledge
 needed in complex, open-ended worlds
 • Your kitchen vs. GM factory floor
 understand unconstrained Natural Language

Role of Knowledge in Natural Language Understanding

• WWW Information Extraction
• Speech Recognition
 "word spotting" feasible today
 continuous speech - rapid progress
• Translation / Understanding
 limited progress
 The spirit is willing but the flesh is weak.
 (English)
 The vodka is good but the meat is rotten.
 (Russian)

How the heck do we understand?

• John gave Pete a book.
• John gave Pete a hard time.
• John gave Pete a black eye.
• John gave in.
• John gave up.
• John's legs gave out beneath him.
• It is 300 miles, give or take 10.
How to Get Commonsense?

• CYC Project (Doug Lenat, Cycorp)
 Encoding 1,000,000 commonsense facts about the world by hand
 Coverage still too spotty for use!
 (But see Digital Aristotle project)

• Machine Learning
• Open Mind
• Mining from Wikipedia & the Web
• ???

Recurrent Themes

• Representation vs. Implicit
 Neural Nets - McCulloch & Pitts 1943
 • Died out in 1960's, revived in 1980's
 • Simplified model of real neurons, but still useful: parallelism
 Brooks "Intelligence without Representation"

Recurrent Themes

• Logic vs. Probability
 In 1950's, logic dominates (McCarthy, ...
 • attempts to extend logic "just a little" (e.g. nomon)
 1988 - Bayesian networks (Pearl)
 • efficient computational framework
 Today's hot topic: combining probability & FOL

Recurrent Themes

• Weak vs. Strong Methods
 • Weak - general search methods (e.g. A* search)
 • Knowledge intensive (e.g. expert systems)
 • more knowledge ⇒ less computation
 • Today: resurgence of weak methods
 • desktop supercomputers
 • How to combine weak & strong?

• Importance of Representation
 • "In knowledge lies power"
 • Features in ML
 • Reformulation
Recurrence Themes

- Combinatorial Explosion
- Micro-world successes are hard to scale up.
- How to organize and accumulate large amounts of knowledge?

Historical Perspective

- (4th C BC+) Aristotle, George Boole, Gottlob Frege, Alfred Tarski
 formalizing the laws of logical reasoning
- (16th C+) Gerolamo Cardano, Pierre Fermat, James Bernoulli, Bayes
 formalizing probability
- (1950+) Alan Turing, John von Neumann, Claude Shannon
 thinking as computation
- (1956) John McCarthy, Marvin Minsky, Herbert Simon, Allen Newell
 start of the field of AI

Logistics:

- See website
 www.cs.washington.edu/education/courses/cse473/08au
- Two small projects
 Othello
 TBD
- Grading:
 60% homeworks and mini-projects
 10% midterm
 20% final
 10% class participation, extra credit, etc

For You To Do

- Get on class mailing list
 www.cs.washington.edu/education/courses/cse473/08au
- Dan's Suggestion:
 Start reading Ch 2 in text
 Ch 1 is good, but optional