Inference in Bayesian networks

Chapter 14.4–5
Outline

◊ Exact inference by enumeration
◊ Exact inference by variable elimination
◊ Approximate inference by stochastic simulation
◊ Approximate inference by Markov chain Monte Carlo
Inference tasks

Simple queries: compute posterior marginal $P(X_i|E=e)$
 e.g., $P(NoGas|Gauge=empty, Lights=on, Starts=false)$

Conjunctive queries: $P(X_i, X_j|E=e) = P(X_i|E=e)P(X_j|X_i, E=e)$

Optimal decisions: decision networks include utility information;
 probabilistic inference required for $P(outcome|action, evidence)$

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
\[
P(B|j, m) = \frac{P(B, j, m)}{P(j, m)} = \alpha P(B, j, m) = \alpha \sum_e \sum_a P(B, e, a, j, m)
\]

Rewrite full joint entries using product of CPT entries:
\[
P(B|j, m) = \alpha \sum_e \sum_a P(B)P(e)P(a|B, e)P(j|a)P(m|a)
\]
\[
= \alpha P(B) \sum_e P(e) \sum_a P(a|B, e)P(j|a)P(m|a)
\]

Recursive depth-first enumeration: \(O(n)\) space, \(O(d^n)\) time
function \textsc{Enumeration-Ask}(X, e, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables $\{X\} \cup E \cup Y$

$Q(X) \leftarrow$ a distribution over X, initially empty

for each value x_i of X do

extend e with value x_i for X

$Q(x_i) \leftarrow \textsc{Enumerate-All}(\text{VARS}[bn], e)$

return $\text{Normalize}(Q(X))$

function \textsc{Enumerate-All}(vars, e) returns a real number

if \text{EMPTY?}(vars) then return 1.0

$Y \leftarrow \text{First}(vars)$

if Y has value y in e

then return $P(y \mid Pa(Y)) \times \textsc{Enumerate-All}(\text{REST}(vars), e)$

else return $\sum_y P(y \mid Pa(Y)) \times \textsc{Enumerate-All}(\text{REST}(vars), e_y)$

where e_y is e extended with $Y = y$
Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes $P(j|a)P(m|a)$ for each value of e
Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

\[
P(B|j, m)
= \alpha \frac{P(B)}{B} \sum_e \frac{P(e)}{E} \sum_a \frac{P(a|B, e)}{A} \frac{P(j|a)}{J} \frac{P(m|a)}{M}
= \alpha P(B) \sum_e P(e) \sum_a P(a|B, e) P(j|a) f_M(a)
= \alpha P(B) \sum_e P(e) \sum_a f_J(a) f_M(a)
= \alpha P(B) \sum_e f_{AJM}(b, e) \text{(sum out } A) \text{)}
= \alpha P(B) f_{EJM}(b) \text{(sum out } E) \text{)}
= \alpha f_B(b) \times f_{EJM}(b)
\]
Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

\[\sum_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_x f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\tilde{X}} \]

assuming \(f_1, \ldots, f_i \) do not depend on \(X \)

Pointwise product of factors \(f_1 \) and \(f_2 \):

\[
f_1(x_1, \ldots, x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l) = f(x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_l)
\]

E.g., \(f_1(a, b) \times f_2(b, c) = f(a, b, c) \)
Variable elimination algorithm

function `ELIMINATION-ASK(X, e, bn)` returns a distribution over `X`

inputs: `X`, the query variable
 `e`, evidence specified as an event
 `bn`, a belief network specifying joint distribution `P(X₁, . . . , Xₙ)`

`factors ← []; vars ← REVERSE(VARS[bn])`

for each `var` in `vars` do
 `factors ← [MAKE-FACTOAR(var, e)|factors]`
 if `var` is a hidden variable then `factors ← SUM-OUT(var, factors)`

return `NORMALIZE(POINTWISE-PRODUCT(factors))`
Irrelevant variables

Consider the query $P(JohnCalls | Burglary = true)$

$$P(J | b) = \alpha P(b) \sum_e P(e) \sum_a P(a | b, e) P(J | a) \sum_m P(m | a)$$

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup E)$

Here, $X = JohnCalls$, $E = \{Burglary\}$, and $Ancestors(\{X\} \cup E) = \{Alarm, Earthquake\}$

so $MaryCalls$ is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For \(P(\text{JohnCalls}|\text{Alarm}=true) \), both Burglary and Earthquake are irrelevant
Complexity of exact inference

Singly connected networks (or polytrees):
- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^kn)$

Multiply connected networks:
- can reduce 3SAT to exact inference ⇒ NP-hard
- equivalent to counting 3SAT models ⇒ #P-complete

```
1. A ∨ B ∨ C
2. C ∨ D ∨ ¬A
3. B ∨ C ∨ ¬D
```
Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:
- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior
function Prior-Sample\((bn)\) returns an event sampled from \(bn\)
inputs: \(bn\), a belief network specifying joint distribution \(P(X_1, \ldots, X_n)\)

\(x\) ← an event with \(n\) elements
for \(i = 1\) to \(n\) do
 \(x_i\) ← a random sample from \(P(X_i \mid parents(X_i))\)
 given the values of Parents\((X_i)\) in \(x\)
return \(x\)
Example

\[P(C) = 0.50 \]

\begin{array}{|c|c|}
\hline
C & P(S|C) \\
\hline
T & 0.10 \\
F & 0.50 \\
\hline
\end{array}

\begin{array}{|c|c|}
\hline
C & P(R|C) \\
\hline
T & 0.80 \\
F & 0.20 \\
\hline
\end{array}

\begin{array}{|c|c|c|}
\hline
S & R & P(W|S,R) \\
\hline
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\hline
\end{array}
Example

\[
P(C) = 0.50
\]

| \(C\) | \(P(S|C)\) |
|-------|------------|
| T | 0.10 |
| F | 0.50 |

\[
P(R|C)
\]

| \(C\) | \(P(R|C)\) |
|-------|------------|
| T | 0.80 |
| F | 0.20 |

\[
P(W|S,R)
\]

| \(S\) | \(R\) | \(P(W|S,R)\) |
|-------|-------|-------------|
| T | T | 0.99 |
| T | F | 0.90 |
| F | T | 0.90 |
| F | F | 0.01 |
Example

- **P(C)**: 0.50
- **Cloudy**
- **Sprinkler**
 - C | P(S|C)
 - T | 0.10
 - F | 0.50
- **Rain**
 - C | P(R|C)
 - T | 0.80
 - F | 0.20
- **Wet Grass**

- **P(W|S,R)**:
 - S | R | P(W|S,R)
 - T | T | 0.99
 - T | F | 0.90
 - F | T | 0.90
 - F | F | 0.01
Example

\[P(C) = 0.50 \]

\[\begin{array}{c|c}
C & P(S|C) \\
\hline
T & 0.10 \\
F & 0.50 \\
\end{array} \]

\[\begin{array}{c|c}
C & P(R|C) \\
\hline
T & 0.80 \\
F & 0.20 \\
\end{array} \]

\[\begin{array}{c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array} \]
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
\[S_{PS}(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) = P(x_1 \ldots x_n) \]
i.e., the true prior probability

E.g., \(S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t) \)

Let \(N_{PS}(x_1 \ldots x_n) \) be the number of samples generated for event \(x_1, \ldots, x_n \)

Then we have
\[
\lim_{N \to \infty} \hat{P}(x_1, \ldots, x_n) = \lim_{N \to \infty} \frac{N_{PS}(x_1, \ldots, x_n)}{N} \\
= S_{PS}(x_1, \ldots, x_n) \\
= P(x_1 \ldots x_n)
\]

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: \(\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n) \)
Rejection sampling

\(\hat{P}(X|e) \) estimated from samples agreeing with \(e \)

```
function Rejection-Sampling(X, e, bn, N) returns an estimate of \( P(X|e) \)
    local variables: N, a vector of counts over X, initially zero
    for \( j = 1 \) to \( N \) do
        x ← Prior-Sample(bn)
        if x is consistent with e then
            \( N[x] \leftarrow N[x]+1 \) where \( x \) is the value of \( X \) in \( x \)
    return Normalize(\( N[X] \))
```

E.g., estimate \(P(Rain|Sprinkler = true) \) using 100 samples
27 samples have \(Sprinkler = true \)
 Of these, 8 have \(Rain = true \) and 19 have \(Rain = false \).
\(\hat{P}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle \)

Similar to a basic real-world empirical estimation procedure
Analysis of rejection sampling

\[\hat{P}(X|e) = \alpha N_{PS}(X, e) \quad \text{(algorithm defn.)} \]
\[= N_{PS}(X, e)/N_{PS}(e) \quad \text{(normalized by } N_{PS}(e)) \]
\[\approx P(X, e)/P(e) \quad \text{(property of PRIORSAMPLE)} \]
\[= P(X|e) \quad \text{(defn. of conditional probability)} \]

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if \(P(e) \) is small

\(P(e) \) drops off exponentially with number of evidence variables!
Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

function \textsc{Likelihood-Weighting}(X, e, bn, N) returns an estimate of \(P(X | e) \)
local variables: \(W \), a vector of weighted counts over \(X \), initially zero

\begin{align*}
\text{for } j = 1 \text{ to } N \text{ do } \\
& \hspace{1em} x, w \leftarrow \textsc{Weighted-Sample}(bn) \\
& \hspace{1em} W[x] \leftarrow W[x] + w \text{ where } x \text{ is the value of } X \text{ in } x \\
\text{return } \textsc{Normalize}(W[X])
\end{align*}

function \textsc{Weighted-Sample}(bn, e) returns an event and a weight

\begin{align*}
& x \leftarrow \text{an event with } n \text{ elements; } w \leftarrow 1 \\
& \text{for } i = 1 \text{ to } n \text{ do } \\
& \hspace{1em} \text{if } X_i \text{ has a value } x_i \text{ in } e \\
& \hspace{1em} \quad \text{then } w \leftarrow w \times P(X_i = x_i \mid \text{parents}(X_i)) \\
& \hspace{1em} \quad \text{else } x_i \leftarrow \text{a random sample from } P(X_i \mid \text{parents}(X_i)) \\
& \text{return } x, w
\end{align*}
$w = 1.0$
Likelihood weighting example

\[w = 1.0 \]
Likelihood weighting example

\[
\begin{array}{|c|c|}
\hline
C & P(S|C) \\
\hline
T & .10 \\
F & .50 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
C & P(R|C) \\
\hline
T & .80 \\
F & .20 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
S & R & P(W|S,R) \\
\hline
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01 \\
\hline
\end{array}
\]

\[w = 1.0\]
$w = 1.0 \times 0.1$
Likelihood weighting example

\[w = 1.0 \times 0.1 \]
Likelihood weighting example

\[
W = 1.0 \times 0.1
\]
Likelihood weighting example

\[w = 1.0 \times 0.1 \times 0.99 = 0.099 \]
Likelihood weighting analysis

Sampling probability for \texttt{WEIGHTEDSAMPLE} is

\[S_{WS}(z, e) = \prod_{i=1}^{l} P(z_i | \text{parents}(Z_i)) \]

Note: pays attention to evidence in ancestors only
\[\Rightarrow \text{ somewhere "in between" prior and posterior distribution} \]

Weight for a given sample \(z, e \) is

\[w(z, e) = \prod_{i=1}^{m} P(e_i | \text{parents}(E_i)) \]

Weighted sampling probability is

\[S_{WS}(z, e)w(z, e) \]
\[= \prod_{i=1}^{l} P(z_i | \text{parents}(Z_i)) \prod_{i=1}^{m} P(e_i | \text{parents}(E_i)) \]
\[= P(z, e) \text{ (by standard global semantics of network)} \]

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
Approximate inference using MCMC

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)

local variables: N[X], a vector of counts over X, initially zero
Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y

for j = 1 to N do
 for each Z_i in Z do
 sample the value of Z_i in x from P(Z_i|mb(Z_i))
 given the values of MB(Z_i) in x
 N[x] ← N[x] + 1 where x is the value of X in x
 return NORMALIZE(N[X])

Can also choose a variable to sample at random each time
The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see
Estimate $P(Rain|Sprinkler=true, WetGrass=true)$

Sample *Cloudy* or *Rain* given its Markov blanket, repeat. Count number of times *Rain* is true and false in the samples.

E.g., visit 100 states
- 31 have $Rain=true$, 69 have $Rain=false$

$\hat{P}(Rain|Sprinkler=true, WetGrass=true)$
- $\text{NORMALIZE}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution:
- long-run fraction of time spent in each state is exactly proportional to its posterior probability
Markov blanket sampling

Markov blanket of *Cloudy* is

Sprinkler and Rain

Markov blanket of *Rain* is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

\[
P(x'_i|mb(X_i)) = P(x'_i|\text{parents}(X_i)) \prod_{Z_j \in \text{Children}(X_i)} P(z_j|\text{parents}(Z_j))
\]

Easily implemented in message-passing parallel systems, brains

Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

\[
P(X_i|mb(X_i)) \text{ won’t change much (law of large numbers)}
\]
Summary

Exact inference by variable elimination:
- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:
- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables