
PDDL���� The Language for the Classical Part of the �th

International Planning Competition

Stefan Edelkamp
Fachbereich Informatik
Baroper Str� ���� GB IV
����� Dortmund� Germany

stefan�edelkamp	cs�uni
dortmund�de
��� 
���� ���
����

J�org Ho�mann
Institut f�ur Informatik

Georges
K�ohler
Allee� Geb� ��
����� Freiburg� Germany

ho�mann	informatik�uni
freiburg�de
��� 
���� ���
����

Abstract

This document de�nes the language to be used in the classical part of the
�th International Planning Competition� IPC��� The language comprises all of
PDDL��� levels �� �� and 	� as de�ned by Maria Fox and Derek Long in 
��� parts
of this document have been copied from that source� On top of this language� for
IPC�� derived predicates are re�introduced� and timed initial literals are 
newly�
introduced into the competition language� We give the syntax and semantics
of these constructs�

Technical Report No� ���

Report Date January ��� ���	

� Introduction

The �rd International Planning Competition� IPC��� was run by Derek Long and
Maria Fox� The competition focussed on planning in temporal and metric domains�
For that purpose� Fox and Long developed the PDDL��� language ��	� of which

�



the 
rst three levels were used in IPC��� Level � was the usual STRIPS and ADL
planning� level � added numeric variables� level � added durational constructs�

The �th International Planning Competition� IPC��� will take place alongside
ICAPS������ IPC�� will feature separate parts for classical and probabilistic plan�
ning� In the document at hand� we are only concerned with the classical

part� In this part� it will be tried to provide a useful range of benchmark domains�
motivated by applications and interesting in structure�

In this document� we focus on the language that will be used for formulating the
IPC�� domains� named PDDL���� As the language extensions made for IPC�� still
provide major challenges to the planning community� the language extensions for
IPC�� are relatively moderate� The 
rst three levels of PDDL��� are interpreted as
an agreed fundament� and kept as the basis of PDDL���� PDDL��� also inherits the
separation into the three levels� The language features added on top of PDDL���
are derived predicates 
into levels ���� and �� and timed initial literals 
into level �
only�� Both of these constructs are practically motivated� and will be put to use in
some of the competition domains� Details on the constructs are in the respective
sections� Here� let us note that of all domains in IPC�� that make use of these
constructs there will also be formulations of these domains were the constructs have
been compiled away 
i�e�� translated into arti
cial facts and operators�� So every

planner that can handle the 
rst three levels of PDDL���� or a subset

thereof� will have no di�culty in participating in IPC�	� There will be less
stress on language coverage than there was at IPC�� 
see also Section ���

Section � discusses derived predicates� including a brief description of their syn�
tax� and the de
nition of their semantics� Section � does the same for timed initial
literals� Section � gives a brief overview over the overall arrangements we envision
for the 
classical part of� IPC��� Appendix A provides the full BNF syntax of the
IPC�� language� PDDL���� Please note that this document is only a draft that has
been put together for the use of potential IPC�� participants� We did not have
much time to polish the presentation� The semantic de
nitions we give are done by
adapting parts of the de
nitions given for PDDL��� by Fox and Long in ��	� For full
background information� we refer the reader to this latter article� If you have any
questions�suggestions�comments� please contact the authors by e�mail or phone�

� Derived Predicates

Derived predicates have been implemented in several planning systems in the past�
including e�g� UCPOP ��	� They are predicates that are not a�ected by any of the
actions available to the planner� Instead� the predicate�s truth values are derived by
a set of rules of the form if �
x� then P 
x�� The semantics are� roughly� that an

�



instance of a derived predicate 
a derived predicate whose arguments are instantiated
with constants� a fact� for short� is TRUE i� it can be derived using the available
rules 
more details below��

Under the name �axioms�� derived predicates were a part of the original PDDL
language de
ned by McDermott ��	 for the 
rst planning competition� but they
have never been put to use in a competition benchmark 
we use the name �derived
predicates� instead of �axioms� in order to avoid confusion with safety conditions��
Derived predicates combine several key aspects that make them a useful language
extension for IPC���

� They are practically motivated� in particular� they provide a concise and con�
venient means to express updates on the transitive closure of a relation� Such
updates occur in domains that include structures such as paths or �ows 
elec�
tricity �ows� chemical �ows� etc��� in particular some interesting domains that
will be used in IPC�� include this kind of structure�

� They are also theoretically justi
ed in that compiling them away can be in�
feasible� Bernhard Nebel proved that� in the worst case� compiling derived
predicates away results in an exponential blow up of either the problem de�
scription� or the plan length ��	�

� Last but not least� derived predicates do not cause a signi
cant implementation
overhead in� at least� forward search planners� when the world state � the truth
values of all non�derived� basic� predicates � is known� computing the truth
values of the derived predicates is conceptually trivial�

IPC�� will use derived predicates only in the non�durational context� PDDL���
level �� maybe also level �� In this context� derived predicates can be compiled
away� by introducing arti
cial actions and facts� As said before� in IPC�� we intend
to provide the competitors that can not handle derived predicates with compiled
formulations of the respective domains 
see also Section ���

Below we de
ne the syntax and semantics of derived predicates as will be used in
IPC��� 
For completeness� the de
nition also covers the durational case� PDDL���
level �� even though as said we do not intend to use this combination in IPC����

��� Syntax

The BNF de
nition of derived predicates involves just two small modi
cations to
the BNF de
nition of PDDL����

�structure�def� ����derived�predicates �derived�def�

�



The domain 
le speci
es a list of �structures�� In PDDL��� these were either
actions or durational actions� Now we also allow �derived� de
nitions at these
points�

�derived�def� ��� ��derived �typed list �variable�� �GD��

The �derived� de
nitions are the �rules� mentioned above� They simply specify
the predicate P to be derived 
with variable vector x�� and the formula �
x� from
which instances of P can be concluded to be true� Syntactically� the predicate and
variables are given by the �atomic formula�term�� expression� and the formula is
given by �GD� 
a �goal descrption�� i�e� a formula��

The full BNF de
nitions can be looked up in Appendix A� The BNF is more
generous than what we actually allow in PDDL���� respectively in IPC��� We make
a number of restrictions to ensure that the de
nitions make sense and are easy to
treat algorithmically� We call a predicate P derived if there is a rule that has a
predicate P in its head� otherwise we call P basic� The restrictions we make are the
following�

�� The actions available to the planner do not a�ect the derived predicates� no
derived predicate occurs on any of the e�ect lists of the domain actions�

�� If a rule de
nes that P 
x� can be derived from �
x�� then the variables in x

are pairwise di�erent 
and� as the notation suggests� the free variables of �
x�
are exactly the variables in x��

�� If a rule de
nes that P 
x� can be derived from �� then the Negation Normal
Form 
NNF� of �
x� does not contain any derived predicates in negated form�

The 
rst restriction ensures that there is a separation between the predicates
that the planner can a�ect 
the basic predicates� and those 
the derived predicates�
whose truth values follow from the basic predicates� The second restriction ensures
that the rule right hand sides match the rule left hand sides� Let us explain the
third restriction� The NNF of a formula is obtained by �pushing the negations
downwards�� i�e� transforming ��x � � into �x � 
���� ��x � � into �x � 
����
�
W
�i into

V

��i�� and �

V
�i into

W

��i�� Iterating these transformation steps�

one ends up with a formula where negations occur only in front of atomic formulas
� predicates with variable vectors� in our case� The formula contains a predicate P
in negated form i� there is an occurence of P that is negated� By requiring that
the formulas in the rules 
that derive predicate values� do not contain any derived
predicates in negated form� we ensure that there can not be any negative interactions
between applications of the rules 
see the semantics below��

�



An example of a derived predicate is the �above� predicate in the Blocksworld�
which is true between blocks x and y whenever x is transitively 
possibly with some
blocks in between� on y� Using the derived predicates syntax� this predicate can be
de
ned as follows�

��derived �above �x �y�

�or �on �x �y�

�exists ��z� �and �on �x �z�

�above �z �y�����

Note that formulating the truth value of �above� in terms of the e�ects of the
normal Blocksworld actions is very awkward 
the unconvinced reader is invited to
try�� The predicate is the transitive closure of the �on� relation� Basically� this �
encoding of transitive closures � is what we intend to use derived predicates for in
IPC���

��� Semantics

We now describe the updates that need to be made to the PDDL��� semantics de
�
nitions given by Fox and Long in ��	� We introduce formal notations to capture the
semantics of derived predicates� We then �hook� these semantics into the PDDL���
language by modifying two of the de
nitions in ��	�

Say we are given the truth values of all 
instances of the� basic predicates� and
want to compute the truth values of the 
instances of the� derived predicates from
that� We are in this situation every time we have applied an action� or parallel action
set� 
In the durational context� we are in this situation at the �happenings� in our
current plan� that is every time a durative action starts or 
nishes�� Formally� what
we want to have is a function D that maps a set of basic facts 
instances of basic
predicates� to the same set but enriched with derived facts 
the derivable instances
of the derived predicates�� Assume we are given the set R of rules for the derived
predicates� where the elements of R have the form 
P 
x�� �
x�� � if �
x� then P 
x��
Then D
s�� for a set of basic facts s� is de
ned as follows�

D
s� ��
�
fs� j s � s���
P 
x�� �
x�� � R � �c� jcj � jxj � 
s� j� �
c�� P 
c� � s��g

This de
nition uses the standard notations of the modelling relation j� between
states 
represented as sets of facts in our case� and formulas� and of the substitution
�
c� of the free variables in formula �
x� with a constant vector c� In words� D
s�
is the intersection of all supersets of s that are closed under application of the rules
R�

�



Remember that we restrict the rules to not contain any derived predicates in
negated form� This implies that the order in which the rules are applied to a state
does not matter 
we can not �lose� any derived facts by deriving other facts 
rst��
This� in turn� implies that D
s� is itself closed under application of the rules R� In
other words� D
s� is the least 
xed point over the possible applications of the rules
R to the state where all derived facts are assumed to be FALSE 
represented by
their not being contained in s��

More constructively� D
s� can be computed by the following simple process�

s� �� s

do

select a rule 
P 
x�� �
x�� and a vector c of constants� jcj � jxj�
such that s� j� �
c�

let s� �� s� � fP 
c�g
until no appropriate rule and constant vector could be selected
let D
s� �� s�

In words� apply the applicable rules in an arbitrary order until no new facts can
be derived anymore�

We can now specify what an executable plan is in PDDL��� with derived predi�
cates� All we need to do is to hook the function D into De
nition ��� �Happening
Execution�� in ��	� By this de
nition� Fox and Long de
ne the state transitions in a
plan� The happenings in a 
temporal or non�temporal� plan are all time points at
which at least one action e�ect occurs� Fox and Long�s de
nition is this�

De
nition �
 Happening Execution 
Fox and Long ��	�
Given a state� 
t� s�x� and a happening� H� the activity for H is the set of grounded

actions

AH � fajthe name for a is in H� a is valid and Prea is satis�ed in 
t� s�x�g

The result of executing a happening� H� associated with time tH � in a state


t� s�x� is unde�ned if jAH j 	� jHj or if any pair of actions in AH is mutex� Other�

wise� it is the state 
tH � s
��x�� where

s� � 
s n
�

a�AH

Dela� �
�

a�AH

Adda 

 
 
�

and x� is the result of applying the composition of the functions fNPFa j a � AHg to

x�

�



Note that the happenings consist of grounded actions� i�e� all operator param�
eters are instantiated with constants� To introduce the semantics of derived pred�
icates� we now modify the result of executing the happening� 
We will also adapt
the de
nition of mutex actions� see below�� The result of executing the happening
is now obtained by applying the actions to s� then subtracting all derived facts from
this� then applying the function D� That is� in the above de
nition we replace 



�
with the following�

s� � D


s n
�

a�AH

Dela� �
�

a�AH

Adda� nD�

where D denotes the set of all derived facts� If there are no derived predicates� D is
the empty set and D is the identity function�

As an example� say we have a Blocksworld instance where A is on B is on C� s �
fclear
A�� on
A�B�� on
B�C�� ontable
C�� above
A�B�� above
B�C�� above
A�C�g�
and our happening applies an action that moves A to the table� Then the happening
execution result will be computed by removing on
A�B� from s� adding clear
B�
and ontable
A� into s� removing all of above
A�B�� above
B�C�� and above
A�C�
from s� and applying D to this� which will re�introduce 
only� above
B�C�� So s�

will be s� � fclear
A�� ontable
A�� clear
B�� on
B�C�� ontable
C�� above
B�C�g�
By the de
nition of happening execution� Fox and Long ��	 de
ne the state

transitions in a plan� The de
nitions of what an executable plan is� and when a
plan achieves the goal� are then standard� The plan is executable if the result of all
happenings in the plan is de
ned� This means that all action preconditions have to
be ful
lled in the state of execution� and that no two pairs of actions in a happening
are mutex� The plan achieves the goal if the goal holds true in the state that results
after the execution of all actions in the plan�

With our above extension of the de
nition of happening executions� the de
�
nitions of plan executability and goal achievement need not be changed� We do�
however� need to adapt the de
nition of when a pair of actions is mutex� This is
important if the happenings can contain more than one action� i�e� if we consider
parallel 
e�g� Graphplan�style� or concurrent 
durational� planning� Fox and Long
��	 give a conservative de
nition that forbids the actions to interact in any possible
way� The de
nition is the following�

De
nition �� Mutex Actions 
Fox and Long ��	�
Two grounded actions� a and b are non�interfering if

GPrea � 
Addb �Delb� � GPreb � 
Adda �Dela� � � 

 
 
�
Adda �Delb � Addb �Dela � �

La �Rb � Ra � Lb � �
La � Lb � L�

a � L�

b

�



If two actions are not non�interfering they are mutex�

Note that the de
nition talks about grounded actions where all operator param�
eters are instantiated with constants� La� Lb� Ra� and Rb refer to the left and right
hand side of a�s and b�s numeric e�ects� Adda�Addb and Dela�Delb are a�s and
b�s positive 
add� respectively negative 
delete� e�ects� GPrea�Gpreb denotes all

ground� facts that occur in a�s�b�s precondition� If a precondition contains quan�
ti
ers then these are grounded out 
�x transforms to

V
ci� �x transforms to

W
ci

where the ci are all objects in the given instance�� and GPre is de
ned over the
resulting quanti
er�free 
and thus variable�free� formula� Note that this de
nition
of mutex actions is very conservative � if� e�g�� fact F occurs only positively in a�s
precondition� then it does not matter if F is among the add e�ects of b� The con�
servative de
nition has the advantage that it makes it algorithmically very easy to

gure out if or if not a and b are mutex�

In the presence of derived predicates� the above de
nition needs to be extended
to exclude possible interactions that can arise indirectly due to derived facts� in
the precondition of the one action� whose truth value depends on the truth value of

basic� facts a�ected by the e�ects of the other action� In the same spirit in that Fox
and Long forbid any possibility of direct interaction� we now forbid any possibility
of indirect interaction� Assume we ground out all rules 
P 
x�� �
x�� for the derived
predicates� i�e� we insert all possible vectors c of constants� we also ground out the
quanti
ers in the formulas �
c�� ending up with variable free rules� We de
ne a
directed graph where the nodes are 
ground� facts� and an edge from fact F to fact
F � is inserted i� there is a grounded rule 
P 
c�� �
c�� such that F � � P 
c�� and F

occurs in �
c�� Now say we have an action a� where all ground facts occuring in a�s
precondition are� see above� denoted by GPrea� By DPrea we denote all ground
facts that can possibly in�uence the truth values of the derived facts in GPrea�

DPrea �� fF j there is a path from F to some F � � GPreag

The de
nition of mutex actions is now updated simply by replacing� in the above
de
nition� 

 
 
� with�


DPrea �GPrea� � 
Addb �Delb� � 
DPreb �GPreb� � 
Adda �Dela� � �

Note that what we de
ne are� as before� mutexes between actions� not 
as some
people speculated in individual discussions we had� mutexes between actions and
rules 
that derive predicates�� As an example� reconsider the Blocksworld and the
�above� predicate� Assume that the action that moves a block A to the table requires
as an additional� derived� precondition� that A is above some third block� Then� in
principle� two actions that move two di�erent blocks A and B to the table can be

�



executed in parallel� Which block A 
B� is on can in�uence the above relations in
that B 
A� participates� however� this does not matter because if A and B can be
both moved then this implies that they are both clear� which implies that they are
on top of di�erent stacks anyway� We observe that the latter is a statement about
the domain semantics that either requires non�trivial reasoning� or access to the
world state in which the actions are executed� In order to avoid the need to either
do non�trivial reasoning about domain semantics� or resort to a forward search� our
de
nition is the conservative one given above� The de
nition makes the actions
moving A and B mutex on the grounds that they can possibly in�uence each other�s
derived preconditions�

Let us remark explicitly that the de
nition adaptions described above su�ce
to de
ne the semantics of derived predicates for the whole of PDDL���� Fox and
Long reduce the temporal case to the case of simple plans above� so by adapting the
simple�plan de
nitions we have automatically adapted the de
nitions of the more
complex cases� In the temporal setting� PDDL��� level �� the derived predicates
semantics are that their values are computed anew at each happening in the plan
where an action e�ect occurs� As said before� the IPC�� domains will� however�
not use derived predicates in the durational context� 
Partly because we don�t
have a domain where we need both durations and derived predicates� and partly
because compiling derived predicates away is not easily possibly in the presence of
durations� where the actions that the compilation introduces take time� and time
can be critical��

� Timed Initial Literals

Timed initial literals are a syntactically very simple way of expressing a certain
restricted form of exogenous events� facts that will become TRUE or FALSE at
time points that are known to the planner in advance� independently of the actions
that the planner chooses to execute� Timed initial literals are thus deterministic
unconditional exogenous events� Syntactically� we simply allow the initial state to
specify � beside the usual facts that are true at time point � � literals that will
become true at time points greater than ��

Timed initial literals are practically very relevant� in the real world� determinis�
tic unconditional exogenous events are very common� typically in the form of time
windows 
within which a shop has opened� within which humans work� within which
tra�c is slow� within which there is daylight� within which a seminar room is occu�
pied� within which nobody answers their mail because they are all at conferences�
etc���

IPC�� will use timed initial literals only in the durational context� PDDL���

�



level �� As said before� we intend to provide the competitors that can not handle
timed initial literals with compiled formulations of the respective domains 
see also
Section ��� Below we de
ne the syntax and semantics of derived predicates as will
be used in IPC���

��� Syntax

As said� the syntax simply allows literals with time points in the initial state�

�init� ��� ��init �init�el���

�init�el�����timed�initial�literals �at �number� �literal�name���

The requirement �ag for timed initial literals implies the requirement �ag for
durational actions 
see also Section A���� i�e� as said the language construct is only
available in PDDL��� level �� The times �number� at which the timed literals occur
are restricted to be greater than �� If there are also derived predicates in the domain�
then the timed literals are restricted to not in�uence any of these� i�e�� like action
e�ects they are only allowed to a�ect the truth values of the basic 
non�derived�
predicates 
IPC�� will not use both derived predicates and timed initial literals
within the same domain��

As an illustrative example� consider a planning task where the goal is to be done
with the shopping� There is a single action go�shopping that achieves the goal� and
requires the 
single� shop to be open as the precondition� The shop opens at time �
relative to the initial state� and closes at time ��� We can express the shop opening
times by two timed initial literals�

��init

�at � �shop�open��

�at 	
 �not �shop�open���

�

Note that what we express this way is basically a time window� This � expressing
time windows � is what timed initial literals will be used for in IPC���

��� Semantics

We now describe the updates that need to be made to the PDDL��� semantics
de
nitions given by Fox and Long in ��	� Adapting two of the de
nitions su�ces�

The 
rst de
nition we need to adapt is the one that de
nes what a �simple plan��
and its happening sequence� is� The original de
nition by Fox and Long is this�

��



De
nition �� Simple Plan 
Fox and Long ��	�
A simple plan� SP � for a planning instance� I� consists of a �nite collection of timed
simple actions which are pairs 
t� a�� where t is a rational�valued time and a is an

action name�
The happening sequence� ftigi�����k for SP is the ordered sequence of times in

the set of times appearing in the timed simple actions in SP � All ti must be greater

than �� It is possible for the sequence to be empty �an empty plan��

The happening at time t� Et� where t is in the happening sequence of SP � is the

set of �simple� action names that appear in timed simple actions associated with the

time t in SP �

In the STRIPS case� the time stamps are the natural numbers �� � � � � n when
there are n actions�parallel action sets in the plan� The happenings then are the
actions�parallel action sets at the respective time steps� Fox and Long reduce the
temporal planning case to the simple plan case de
ned here by splitting each dura�
tional action up into at least two simple actions � the start action� the end action�
and possibly several actions in between that guard the durational action�s invariants
at the points where other action e�ects occur� So in the temporal case� the happen�
ing sequence is comprised of all time points at which �something happens�� i�e� at
which some action e�ect occurs�

To introduce our intended semantics of timed initial literals� all we need to do to
this de
nition is to introduce additional happenings into the temporal plan� namely
the time points at which some timed initial literal occurs� The timed initial literals
can be interpreted as simple actions that are forced into the respective happenings

rather than selected into them by the planner�� whose precondition is true� and
whose only e�ect is the respective literal� The rest of Fox and Long�s de
nitions
then carry over directly 
except goal achievement� which involves a little care� see
below�� The PDDL��� de
nition of simple plans is this here�

De
nition �� Simple Plan

A simple plan� SP � for a planning instance� I� consists of a �nite collection of timed
simple actions which are pairs 
t� a�� where t is a rational�valued time and a is an

action name� By tend we denote the largest time t in SP � or � if SP is empty�

Let TL be the ��nite� set of all timed initial literals� given as pairs 
t� l� where
t is the rational�valued time of occurence of the literal l� We identify each timed

initial literal 
t� l� in TL with a uniquely named simple action that is associated with

time t� whose precondition is TRUE� and whose only e	ect is l�

The happening sequence� ftigi�����k for SP is the ordered sequence of times in

the set of times appearing in the timed simple actions in SP and TL� All ti must

be greater than �� It is possible for the sequence to be empty �an empty plan��

��



The happening at time t� Et� where t is in the happening sequence of SP � is the

set of �simple� action names that appear in timed simple actions associated with the

time t in SP or TL�

Thus the happenings in a temporal plan are all points in time where either an
action e�ect� or a timed literal� occurs� The timed literals are simple actions forced
into the plan� With this construction� Fox and Long�s De
nitions �� 
Mutex Actions�
and �� 
Happening Execution�� as described 
and adapted to derived predicates� in
Section ���� can be kept unchanged� They state that no action e�ect is allowed to
interfere with a timed initial literal� and that the timed initial literals are true in
the state that results from the execution of the happening they are contained in�
Fox and Long�s De
nition �� 
Executability of a plan� can also be kept unchanged
� the timed initial literals change the happenings in the plan� but not the conditions
under which a happening can be executed�

The only de
nition we need to re�think is that of what the makespan of a valid
plan is� In Fox and Long�s original de
nition� this is implicit in the de
nition of
vaild plans� The de
nition is this�

De
nition �� Validity of a Simple Plan 
Fox and Long ��	�
A simple plan �for a planning instance� I� is valid if it is executable and produces a

�nal state S� such that the goal speci�cation for I is satis�ed in S�

The makespan of the valid plan is accessible in PDDL��� and PDDL��� by the
�total�time� variable that can be used in the optimization expression� Naturally�
Fox and Long take the makespan to be the end of the plan� the time point of the
plan�s 
nal state�

In the presence of timed initial literals� the question of what the plan�s makespan
is becomes a little more subtle� With Fox and Long�s above original de
nition� the
makespan would be the end of all happenings in the simple plan� which include all
timed initial literals 
see the revised De
nition �� above�� So the plan would at
least take as long as it takes until no more timed literals occur� But a plan might be

nished long before that � imagine something that needs to be done while there is
daylight� certainly the plan does not need to wait until sunset� We therefore de
ne
the makespan to be the earliest point in time at which the goal condition becomes

and remains� true� Formally this reads as follows�

De
nition �� Validity and Makespan of a Simple Plan

A simple plan �for a planning instance� I� is valid if it is executable and produces

a �nal state S� such that the goal speci�cation for I is satis�ed in S� The plan
s

makespan is the smallest t 
 tend such that� for all happenings at times t� 
 t in
the plan
s happening sequence� the goal speci�cation is satis�ed after execution of the

happening�

��



Remember that tend denotes the time of the last happening in the plan that
contains an e�ect caused by the plan�s actions � in simpler terms� tend is the end
point of the plan� What the de
nition says is that the plan is valid if� at some
time point t after the plan�s end� the goal condition is achieved and remains true
until after the last timed literal has occured� The plan�s makespan is the 
rst such
time point t� Note that the planner can �use� the events to achieve the goal� by
doing nothing until a timed literal occurs that makes the goal condition true � but
then the waiting time until the nearest such timed literal is counted into the plan�s
makespan� 
The latter is done to avoid situations where the planner could prefer
to wait millions of years rather than just applying a single action itself�� Please
remember that the makespan of the plan� de
ned as above� is what can be

denoted by total�time in the optimization expression de
ned with the

problem instance�
In conclusion of our description of the new language features in PDDL���� let us

reiterate that the full BNF syntax for PDDL��� is contained in Appendix A� and
that the full de
nition of the PDDL��� semantics results from the de
nitions given
by Fox and Long for PDDL��� in ��	� when extending Fox and Long�s de
nitions as
described above in this document� We now close the document with an outline of
our plans for the classical part of IPC���

� IPC�� �Classical Part� Overview

The main e�ort made in the preparation of the classical part of IPC�� is an at�
tempt to come up with an interesting range of benchmark domains� domains that
are motivated by applications� and that are interesting in structure� We expect to
use between 
ve and eight domains in the competition� Of each domain there will
be di�erent versions� di�ering in terms of the 
number of� problem constraints
they consider� Of each domain version� there will be di�erent formulations� dif�
fering in terms of the language used to formulate the 
same� problem constraints�

Formulations of complex problem constraints in more primitive languages such as
STRIPS will be made by compiling down from the instances formulated in richer
languages such as ADL�� We intend to let the competitors choose whichever formu�
lation of a domain version they can handle best�handle at all� The results for one
domain version will then be evaluated together 
irrespective of the formulation used
by the individual planners�� We expect to use two domains whose most natural 
and
concise� formulation features derived predicates� and two domains where the most
natural formulation 
of the most complex domain version� uses timed initial liter�
als� As said before� of all domain versions that use one of the new language

features� we will also provide formulations where these new features have

��



been compiled away� As an example� of a domain we might have the three dif�
ferent versions non�temporal� temporal� temporal with time windows� In each of
the versions we might have a formulation that uses ADL� and a formulation where
ADL has been compiled into STRIPS� In the temporal version with time windows�
one formulation would use timed initial literals to encode the time windows� while
another formulation would encode the time windows by arti
cial facts and actions�

A bulleted list of the main points we will be trying to make is this here�

� A structurally interesting range of benchmark domains that� in their most
complex versions� come close 
that is� as close as feasible in the context of the
competition� to existing applications of planning�

� Make the parsing�language 
implementation� barrier less prohibitive by pro�
viding compiled formulations of the domains�

� Less stress on coverage than at IPC��� when using compiled domain formu�
lations 
rather than simpli
ed domain formulations� as has traditionally been
done� in more primitve languages� even the STRIPS domains will constitute an
interesting range of benchmark problems� and good performance across them
will be honoured�

� Reviving optimal planning� we will make sure that in all domain versions there
are enough smaller instances to obtain meaningful data to compare optimal
planners � planners that prove a guarantee on the quality of the found solution

such planners typically do not scale as far as the sub�optimal approaches��
We intend to give a separate price to the best 
most e�cient� optimal planner
in IPC���

For more� and up�to�date� details on the main aspects of 
the classical part
of� IPC��� in particular for downloads of testing examples showing the language
features and compilations we intend to use� please consider the IPC�� web page at
http���ipc�icaps�conference�org�

Acknowledgements

We would like to thank the IPC�� organizing committee for their help in taking
the decision about the language for the classical part of IPC��� and in ironing out
the details about syntax and semantics� The people contributing to this discussion
were Drew McDermott� Daniel Weld� David Smith� Hakan Younes� Jussi Rintanen�
Sylvie Thiebaux� Maria Fox� and Derek Long� We thank Maria Fox and Derek Long
for giving us the latex sources for the BNF description of PDDL��� 
they� in turn�
started from the original sources provided by McDermott�� We also thank Fox and

��



Long for giving us the latex sources of their PDDL��� article� and for discussing
the modi
cations of this document needed to introduce the semantics of derived
predicates and timed initial literals�

References

��	 Maria Fox and Derek Long� PDDL���� An extension to PDDL for expressing
temporal planning domains� Journal of Arti�cial Intelligence Research� �����
Special issue on the �rd International Planning Competition� to appear�

��	 Drew McDermott et al� The PDDL Planning Domain De�nition Language� The
AIPS��� Planning Competition Comitee� �����

��	 J� Scott Penberthy and Daniel S� Weld� UCPOP� A sound� complete� partial
order planner for ADL� In B� Nebel� W� Swartout� and C� Rich� editors� Prin�
ciples of Knowledge Representation and Reasoning� Proceedings of the �rd In�

ternational Conference �KR�
��� pages �������� Cambridge� MA� October �����
Morgan Kaufmann�

��	 Sylvie Thiebaux� J�org Ho�mann� and Bernhard Nebel� In defense of PDDL
axioms� In G� Gottlob� editor� Proceedings of the ��th International Joint Con�

ference on Arti�cial Intelligence �IJCAI����� Acapulco� Mexico� August �����
Morgan Kaufmann� accepted for publication�

A BNF Description of PDDL���

This appendix contains a complete BNF speci
cation of the PDDL��� language�
This is the same as the 
rst three levels of PDDL��� 
the language used in the IPC�
� domains�� plus the possibilities to de
ne derived predicates� and timed literals�
Level � of pddl��� 
continuous e�ects� has been skipped as the IPC�� committee
considered it a too signi
cant competition language extension at the current point
in time� Note that this does not exclude the possibility to introduce PDDL��� level
� into the languages of future competitions�

For readability� in the following we mark with 



� the points in the BNF where
the new language constructs of PDDL��� are inserted�

A�� Domains

Domains are de
ned exactly as in PDDL���� except that we now also allow to de
ne
rules for derived predicates at the points where operators 
actions� are allowed�

��



�domain� ��� �define �domain �name��

��require�def�	

��types�def�	�typing

��constants�def�	

��predicates�def�	

��functions�def�	�fluents

�structure�def���

�require�def� ��� ��requirements �require�key���

�require�key� ��� See Section A��

�types�def� ��� ��types �typed list �name���

�constants�def� ��� ��constants �typed list �name���

�predicates�def� ��� ��predicates �atomic formula skeleton���

�atomic formula skeleton�

��� ��predicate� �typed list �variable���

�predicate� ��� �name�

�variable� ��� 
�name�

�atomic function skeleton�

��� ��function�symbol� �typed list �variable���

�function�symbol� ��� �name�

�functions�def� ����fluents ��functions �function typed list

�atomic function skeleton���

�structure�def� ��� �action�def�

�structure�def� ����durative�actions �durative�action�def�


� � �� �structure�def� ����derived�predicates �derived�def�

�typed list �x�� ��� x�

�typed list �x�� ����typing x�� �type� �typed list�x��
�primitive�type� ��� �name�

�type� ��� �either �primitive�type���

�type� ��� �primitive�type�

�function typed list �x�� ��� x�

�function typed list �x�� ����typing x�� �function type�

�function typed list�x��
�function type� ��� number

A�� Actions

The BNF for an action de
nition is the same as in PDDL����

�action�def� ��� ��action �action�symbol�

�parameters � �typed list �variable�� �

�action�def body��

�action�symbol� ��� �name�

�action�def body� ��� ��precondition �GD�	

��effect �effect�	

��



�GD� ��� ��

�GD� ��� �atomic formula�term��

�GD� ����negative�preconditions �literal�term��

�GD� ��� �and �GD���

�GD� ����disjunctive�preconditions �or �GD���

�GD� ����disjunctive�preconditions �not �GD��

�GD� ����disjunctive�preconditions �imply �GD� �GD��

�GD� ����existential�preconditions

�exists ��typed list�variable���� �GD� �

�GD� ����universal�preconditions

�forall ��typed list�variable���� �GD� �

�GD� ����fluents �f�comp�

�f�comp� ��� ��binary�comp� �f�exp� �f�exp��

�literal�t�� ��� �atomic formula�t��
�literal�t�� ��� �not �atomic formula�t���
�atomic formula�t�� ��� ��predicate� t��
�term� ��� �name�

�term� ��� �variable�

�f�exp� ��� �number�

�f�exp� ��� ��binary�op� �f�exp� �f�exp��

�f�exp� ��� �� �f�exp��

�f�exp� ��� �f�head�

�f�head� ��� ��function�symbol� �term���

�f�head� ��� �function�symbol�

�binary�op� ��� �
�binary�op� ��� �

�binary�op� ��� �

�binary�op� ��� �
�binary�comp� ��� �
�binary�comp� ��� �
�binary�comp� ��� �
�binary�comp� ��� ��
�binary�comp� ��� ��
�number� ��� Any numeric literal

�integers and floats of form n�n��
�effect� ��� ��

�effect� ��� �and �c�effect���

�effect� ��� �c�effect�

�c�effect� ����conditional�effects �forall ��variable��� �effect��

�c�effect� ����conditional�effects �when �GD� �cond�effect��

�c�effect� ��� �p�effect�

�p�effect� ��� ��assign�op� �f�head� �f�exp��

�p�effect� ��� �not �atomic formula�term���

�p�effect� ��� �atomic formula�term��

�p�effect� ����fluents��assign�op� �f�head� �f�exp��

��



�cond�effect� ��� �and �p�effect���

�cond�effect� ��� �p�effect�

�assign�op� ��� assign

�assign�op� ��� scale�up

�assign�op� ��� scale�down

�assign�op� ��� increase

�assign�op� ��� decrease

A�� Durative Actions

Durative actions are the same as in PDDL���� except that we restrict ourselves to
level � actions� where the duration is given as the 
xed value of a numeric expression

rather than as the possible values de
ned by a set of constraints�� This slightly
simpli
es the BNF�

�durative�action�def� ��� ��durative�action �da�symbol�

�parameters � �typed list �variable�� �

�da�def body��

�da�symbol� ��� �name�

�da�def body� ��� �duration �� 
duration �f�exp��

�condition �da�GD�

�effect �da�effect�

�da�GD� ��� ��

�da�GD� ��� �timed�GD�

�da�GD� ��� �and �timed�GD���

�timed�GD� ��� �at �time�specifier� �GD��

�timed�GD� ��� �over �interval� �GD��

�time�specifier� ��� start

�time�specifier� ��� end

�interval� ��� all

A�� Derived predicates

As said� rules for derived predicates can be given in the domain description at the
points where actions are allowed� The BNF is�


� � �� �derived�def� ��� ��derived �typed list �variable�� �GD��

Note that we allow the speci
cation of types with the derived predicate argu�
ments� This might seem redundant as the predicate types are already declared in

��



the �predicates 
eld� Allowing to specify types with the predicate 
rule� �param�
eters� serves to give the language a more uni
ed look�and�feel� and one might use
the option to make the parameter ranges more restrictive� 
Remember that the
speci
cation of types is optional� not manadatory��

Repeating what has been said in Section ���� this BNF is more generous than
what is considered a well�formed domain description in PDDL���� We call a predi�
cate P derived if there is a rule that has a predicate P in its head� otherwise we call
P basic� The restrictions we apply are�

�� The actions available to the planner do not a�ect the derived predicates� no
derived predicate occurs on any of the e�ect lists of the domain actions�

�� If a rule de
nes that P 
x� can be derived from �
x�� then the variables in x

are pairwise di�erent 
and� as the notation suggests� the free variables of �
x�
are exactly the variables in x��

�� If a rule de
nes that P 
x� can be derived from �� then the Negation Normal
Form 
NNF� of �
x� does not contain any derived predicates in negated form�

A�� Problems

The only change made to PDDL��� in the problem description is that we allow the
speci
cation of timed initial literals�

�problem� ��� �define �problem �name��

��domain �name��

��require�def�	

��object declaration� 	

�init�

�goal�

��metric�spec�	

��length�spec� 	�

�object declaration� ��� ��objects �typed list �name���

�init� ��� ��init �init�el���

�init�el� ��� �literal�name��

�init�el� ����fluents �� �f�head� �number��


� � �� �init�el� ����timed�initial�literals �at �number� �literal�name���

�goal� ��� ��goal �GD��

�metric�spec� ��� ��metric �optimization� �ground�f�exp��

�optimization� ��� minimize

�optimization� ��� maximize

�ground�f�exp� ��� ��binary�op� �ground�f�exp� �ground�f�exp��

�ground�f�exp� ��� �� �ground�f�exp��

��



�ground�f�exp� ��� �number�

�ground�f�exp� ��� ��function�symbol� �name���

�ground�f�exp� ��� total�time

�ground�f�exp� ��� �function�symbol�

Repeating what has been said in Section ���� the requirement �ag for timed initial
literals implies the requirement �ag for durational actions 
see also Section A����
i�e� the language construct is only available in PDDL��� level �� Also� the above
BNF is more generous than what is considered a well�formed problem description
in PDDL���� The times �number� at which the timed literals occur are restricted
to be greater than �� If there are also derived predicates in the domain� then the
timed literals are restricted to not in�uence any of these� i�e�� like action e�ects
they are only allowed to a�ect the truth values of the basic 
non�derived� predicates

IPC�� will not use both derived predicates and timed initial literals within the same
domain��

A�� Requirements

Here is a table of all requirements in PDDL���� Some requirements imply others�
some are abbreviations for common sets of requirements� If a domain stipulates no
requirements� it is assumed to declare a requirement for �strips�

��



Requirement Description

�strips Basic STRIPS�style adds and deletes
�typing Allow type names in declarations of variables
�negative�preconditions Allow not in goal descriptions
�disjunctive�preconditions Allow or in goal descriptions
�equality Support � as built�in predicate
�existential�preconditions Allow exists in goal descriptions
�universal�preconditions Allow forall in goal descriptions
�quantified�preconditions � �existential�preconditions

� �universal�preconditions

�conditional�effects Allow when in action e�ects
�fluents Allow function de�nitions and use of e�ects using

assignment operators and arithmetic preconditions�
�adl � �strips � �typing

� �negative�preconditions

� �disjunctive�preconditions

� �equality

� �quantified�preconditions

� �conditional�effects

�durative�actions Allows durative actions�
Note that this does not imply �fluents�

�derived�predicates Allows predicates whose truth value is
de�ned by a formula

�timed�initial�literals Allows the initial state to specify literals
that will become true at a speci�ed time point
implies durative actions �i�e� applicable only
in PDDL��� level ��

��


