
PDDL � The Planning Domain De�nition Language
Version ���

This manual was produced by the AIPS��� Planning Competition Committee�

Malik Ghallab	 Ecole Nationale Superieure D
ingenieur des
Constructions Aeronautiques

Adele Howe �Colorado State University�
Craig Knoblock	 ISI
Drew McDermott �chair� �Yale University�
Ashwin Ram �Georgia Tech University�
Manuela Veloso �Carnegie Mellon University�
Daniel Weld �University of Washington�
David Wilkins �SRI�

It was based on the UCPOP language manual	 written by the following
researchers from the University of Washington�

Anthony Barrett	 Dave Christianson	 Marc Friedman	 Chung Kwok	
Keith Golden	 Scott Penberthy	 David E Smith	 Ying Sun	

 Daniel Weld

Contact Drew McDermott �drew�mcdermott�yale�edu� with comments�

Yale Center for Computational Vision and Control
Tech Report CVC TR��������DCS TR�����

October	 ����

Abstract

This manual describes the syntax of PDDL	 the Planning Domain De�nition Language	
the problem�speci�cation language for the AIPS��� planning competition� The language
has roughly the the expressiveness of Pednault
s ADL ���� for propositions	 and roughly
the expressiveness of UMCP ��� for actions� Our hope is to encourage empirical evaluation
of planner performance	 and development of standard sets of problems all in comparable
notations�

� Introduction

This manual describes the syntax	 and	 less formally	 the semantics	 of the Planning Domain
De�nition Language �PDDL�� The language supports the following syntactic features�

� Basic STRIPS�style actions

� Conditional e�ects

� Universal quanti�cation over dynamic universes �i�e�	 object creation and destruction�	

� Domain axioms over strati�ed theories	

� Speci�cation of safety constraints�

� Speci�cation of hierarchical actions composed of subactions and subgoals�

� Management of multiple problems in multiple domains using di�ering subsets of lan�
guage features �to support sharing of domains across di�erent planners that handle
varying levels of expressiveness��

PDDL is intended to express the �physics� of a domain	 that is	 what predicates there
are	 what actions are possible	 what the structure of compound actions is	 and what the
e�ects of actions are� Most planners require in addition some kind of �advice	� that is	
annotations about which actions to use in attaining which goals	 or in carrying out which
compound actions	 under which circumstances� We have endeavored to provide no advice
at all as part of the PDDL notation� that explains the almost perverse aura of neutrality
surrounding the notation at various places� As a result of this neutrality	 almost all planners
will require extending the notation	 but every planner will want to extend it in di�erent
ways�

Even with advice left out	 we anticipate that few planners will handle the entire PDDL
language� Hence we have factored the language into subsets of features	 called requirements�
Every domain de�ned using PDDL should declare which requirements it assumes� A plan�
ner that does not handle a given requirement can then skip over all de�nitions connected
with a domain that declares that requirement	 and won
t even have to cope with its syntax�

PDDL is descended from several forebears�

� ADL ����

� The SIPE�� formalism ����

� The Prodigy���� formalism ���

� The UMCP formalism ���

� The Unpop formalism ���

� and	 most directly	 the UCPOP formalism ���

Our hope is to encourage sharing of problems and algorithms	 as well as to allow mean�
ingful comparison of the performance of planners on di�erent problems� A particular goal
is to provide a notation for problems to be used in the AIPS��� planning contest�

�

� A Simple Example

To give a �avor of the language	 consider Pednault
s famous example ��� involving trans�
portation of objects between home and work using a briefcase whose e�ects involve both
universal quanti�cation �all objects are moved� and conditional e�ects �if they are inside
the briefcase when it is moved�� The domain is described in terms of three action schemata
�shown below�� We encapsulate these schemata by de�ning the domain and listing its
requirements�

�define �domain briefcase�world�

��requirements �strips �equality �typing �conditional�effects�

��types location physob�

��constants �B � physob��

��predicates �at �x � physob �l � location�

�in �x �y � physob��

���

A domain
s set of requirements allow a planner to quickly tell if it is likely to be able
to handle the domain� For example	 this version of the briefcase world requires conditional
e�ects	 so a straight STRIPS�representation planner would not be able to handle it� A
keyword �symbol starting with a colon� used in a �requirements �eld is called a requirement

�ag� the domain is said to declare a requirement for that �ag�
All domains include a few built�in types	 such as object �any object�	 and number�

Most domains de�ne further types	 such as location and physob ��physical object�� in
this domain�

A constant is a symbol that will have the same meaning in all problems in this domain�
In this case B � the briefcase � is such a constant� �Although we could have a type
briefcase	 we don
t need it	 because there
s only one briefcase��

Inside the scope of a domain declaration	 one speci�es the action schemata for the
domain�

��action mov�b

�parameters ��m �l � location�

�precondition �and �at B �m� �not �� �m �l���

�effect �and �at b �l� �not �at B �m��

�forall ��z�

�when �and �in �z� �not �� �z B���

�and �at �z �l� �not �at �z �m������ �

This speci�es that the briefcase can be moved from location �m to location �l	 where
the symbols starting with question marks denote variables� The preconditions dictate that
the briefcase must initially be in the starting location for the action to be legal and that it is
illegal to try to move the briefcase to the place where it is initially� The e�ect equation says
that the briefcase moves to its destination	 is no longer where it started	 and everything
inside the briefcase is likewise moved�

�

��action put�in

�parameters ��x � physob �l � location�

�precondition �not �� �x B��

�effect �when �and �at �x �l� �at B �l��

�in �x�� �

This action de�nition speci�es the e�ect of putting something �not the briefcase �B�
itself�� inside the briefcase� If the action is attempted when the object is not at the same
place ��l� as the briefcase	 then there is no e�ect�

��action take�out�

�parameters ��x � physob�

�precondition �not �� �x B��

�effect �not �in �x�� �

The �nal action provides a way to remove something from the briefcase�
Pednault
s example problem supposed that at home one had a dictionary and a briefcase

with a paycheck inside it� Furthermore	 suppose that we wished to have the dictionary and
briefcase at work	 but wanted to keep the paycheck at home� We can specify the planning
problem as follows�

�define �problem get�paid�

��domain briefcase�world�

��init �place home� �place office�

�object p� �object d� �object b�

�at B home� �at P home� �at D home� �in P��

��goal �and �at B office� �at D office� �at P home����

One could then invoke a planner by typing something like �graph�plan �get�paid��
The planner checks to see if it can handle the domain requirements and if so	 plans�

� Syntactic Notation

Our notation is an Extended BNF �EBNF� with the following conventions�

� Each rule is of the form 	syntactic element
 ��� expansion�

� Angle brackets delimit names of syntactic elements�

� Square brackets �� and �� surround optional material� When a square bracket has a
superscripted requirement �ag	 such as�

���types �������typing�

it means that the material is includable only if the domain being de�ned has declared
a requirement for that �ag� See Section ���

�

� Similarly	 the symbol ��� may be superscripted with a requirement �ag	 indicating
that the expansion is possible only if the domain has declared that �ag�

� An asterisk �
� means �zero or more of�� a plus ��� means �one or more of��

� Some syntactic elements are parameterized� E�g�	 	list �symbol�
 might denote a
list of symbols	 where there is an EBNF de�nition for 	list x
 and a de�nition for
	symbol
� The former might look like

	list x
 ��� �x
�

so that a list of symbols is just �	symbol

��

� Ordinary parenthesis are an essential part of the syntax we are de�ning and have no
semantics in the EBNF meta language�

As we said in Section �	 PDDL is intended to express only the physics of a domain	 and
will require extension to represent the search�control advice that most planners need� We
recommend that all such extensions obey the following convention� An extended PDDL

expression is an ordinary PDDL expression with some subexpressions of the form ��� e

a�	 where e is an unextended PDDL expression and a is some advice� The ���� notation
indicates that we are ascending to a �meta� level� The word �expression� here is interpreted
as �any part of a PDDL expression that is either a single symbol or an expression of the
form ������� For instance	 the de�nition of mov�b given above might be enhanced for a
particular planner thus�

��action mov�b

�parameters ��m �l � location�

�precondition �and ��� �at B �m�

�goal�type� achievable��

��� �not �� �m �l��

�goal�type� filter���

�effect �and �at b �l� �not �at B �m��

�forall ��z�

�when �and �in �z� �not �� �z B���

�and ��� �at �z �l� �primary�effect�

��� �not �at �z �m�� �side�effect������

to indicate that

�� ��primary�effect vs� �side�effect�� when the planner encounters a goal of the
form �at �z �l�	 it may introduce a mov�b action into a plan in order to achieve
that goal	 but a goal of the form �not �at �z �m��	 while it may be achieved by an
action of this form introduced for another reason	 should not cause a mov�b action to
be created�

�� �di�erent goal�types�� If an action such as �mov�b b� place� place�� arises	 it
should be rejected immediately	 rather than giving rise to a subgoal �not �� place�

place����

�

Adopting this convention should improve the portability of plan�problem collections	
because a planner using PDDL can be written to ignore all advice in unexpected contexts�
In the future	 we may introduce a more complex syntax for attaching advice to be used by
di�erent planners	 but for now the only general principle is that an expression of the form
��� e a� can occur anywhere	 and will mean exactly the same thing as e	 as far as domain
physics are concerned�

Comments in PDDL begin with a semicolon ����� and end with the next newline� Any
such string behaves like a single space�

� Domains

We now describe the language more formally� The EBNF for de�ning a domain structure
is�

	domain
 ��� �define �domain 	name
�

�	extension�def
�

�	require�def
�

�	types�def
��typing

�	constants�def
�

�	domain�vars�def
��expression�evaluation

�	predicates�def
�

�	timeless�def
�

�	safety�def
��safety�constraints

	structure�def
��

	extension�def
 ��� ��extends 	domain name
��

	require�def
 ��� ��requirements 	require�key
��

	require�key
 ��� See Section ��

	types�def
 ��� ��types 	typed list �name�
�

	constants�def
 ��� ��constants 	typed list �name�
�

	domain�vars�def
 ��� ��domain�variables

	typed list�domain�var�declaration�
�

	predicates�def
 ��� ��predicates 	atomic formula skeleton
��

	atomic formula skeleton

��� �	predicate
 	typed list �variable�
�

	predicate
 ��� 	name

	variable
 ��� �	name

	timeless�def
 ��� ��timeless 	literal �name�
��

	structure�def
 ��� 	action�def

	structure�def
 ����domain�axioms 	axiom�def

	structure�def
 ����action�expansions 	method�def

Although we have indicated the arguments in a particular order	 they may come in any
order	 except for the �domain ���� itself�

Proviso� For the convenience of some implementers	 we de�ne a �strict subset� of PDDL
that imposes the following additional restrictions�

�

�� All keyword arguments �for �define �domain ����� and all similar constructs� must
appear in the order speci�ed in the manual� �An argument may be omitted��

�� Just one PDDL de�nition �of a domain	 problem	 etc�� may appear per �le�

�� Addenda �see Section ��� are forbidden�

Names of domains	 like other occurrences of syntactic category 	name
	 are strings of
characters beginning with a letter and containing letters	 digits	 hyphens �����	and under�
scores �� ��� Case is not signi�cant�

If the �extends argument is present	 then this domain inherits requirements	 types	
constants	 actions	 axioms	 and timelessly true propositions from the named domains	 which
are called the ancestors of this domain�

The �requirements �eld is intended to formalize the fact that not all planners can
handle all problems statable in the PDDL notation� If the requirement is missing �and not
inherited from any ancestor domain�	 then it defaults to �strips� In general	 a domain is
taken to declare every requirement that any ancestor declares� A description of all possible
requirements is found in Section ���

The �types argument uses a syntax borrowed from Nisp ��� that is used elsewhere in
PDDL �but only if �typing is handled by the planner�

	typed list �x�
 ��� x�

	typed list �x�
 ����typing x�� 	type
 	typed list�x�

	type
 ��� 	name

	type
 ��� �either 	type
��

	type
 ����fluents �fluent 	type
�

A typed list is used to declare the types of a list of entities� the types are preceded by
a minus sign �����	 and every other element of the list is declared to be of the �rst type
that follows it	 or object if there are no types that follow it� An example of a 	typed

list�name�
 is

integer float � number physob

If this occurs as a �types argument to a domain	 it declares three new types	 integer	
float	 and physob� The �rst two are subclasses of number	 the last a subclass of object
�by default�� That is	 every integer is a number	 every �oat is a number	 and every physical
object is an object�

An atomic type name is just a timeless unary predicate	 and may be used wherever such
a predicate makes sense� In addition to atomic type names	 there are two compound types�
�either t� ���tk� is the union of types t� to tk� �fluent t� is the type of an object whose
value varies from situation to situation	 and is always of type t� �See Section ����

The �domain�variables declaration is used for domains that declare the requirement
�ag �expression�evaluation� this requirement	 and the accompanying syntactic class
domain�var�declaration	 are described in Section ���

The �constants �eld has the same syntax as the �types �eld	 but the semantics is
di�erent� Now the names are taken as new constants in this domain	 whose types are given
as described above� E�g�	 the declaration

�

��constants sahara � theater
division� division� � division�

indicates that in this domain there are three distinguished constants	 sahara denoting a
theater and two symbols denoting divisions�

The �predicates �eld consists of a list of declarations of predicates	 once again using
the typed�list syntax to declare the arguments of each one�

The �timeless �eld consists of a list of literals that are taken to be true at all times
in this domain� The syntax 	literal�name�
 will be de�ned in Section �� It goes without
saying that the predicates used in the timeless propositions must be declared either here or
in an ancestor domain� �Built�in predicates such as ��� behave as if they were inherited from
an ancestor domain	 although whether they actually are implemented this way depends on
the implementation��

The remaining �elds de�ne actions and rules in the domain	 and will be given their own
sections�

� Actions

The EBNF for an action de�nition is�

	action�def
 ��� ��action 	action functor

�parameters � 	typed list �variable�
 �

	action�def body
�

	action functor
 ��� 	name

	action�def body
 ��� ��vars �	typed list�variable�
��
�existential�preconditions
�conditional�effects

��precondition 	GD
�

��expansion

	action spec
��action�expansions

��expansion �methods��action�expansions

��maintain 	GD
��action�expansions

� �effect 	effect
�

��only�in�expansions 	boolean
��action�expansions

The �parameters list is simply the list of variables on which the particular rule operates	
i�e�	 its arguments	 using the typing syntax described above� The �vars list are locally
bound variables whose semantics are explained below�

The �precondition is an optional goal description �GD� that must be satis�ed before
the action is applied� As de�ned below �Section ��	 PDDL goal descriptions are quite
expressive� an arbitrary function�free �rst�order logical sentence is allowed� If no precondi�
tions are speci�ed	 then the action is always executable� E�ects list the changes which the
action imposes on the current state of the world� E�ects may be universally quanti�ed and
conditional	 but full �rst order sentences �e�g�	 disjunction and Skolem functions� are not
allowed� Thus	 it is important to realize that PDDL is asymmetric� action preconditions
are considerably more expressive than action e�ects�

�

The �effect describes the e�ects of the action� See Section ��
If the domain declares requirement �action�expansions	 then it is legitimate to include

an �expansion �eld for an action	 which speci�es all the ways the action may be carried
out in terms of �presumably simpler� actions� It is also meaningful to impose a constraint
that a 	GD
 be maintained throughout the execution of an action� See Section ��

An action de�nition must have an �effect or an �expansion	 but not both�
Free variables are not allowed� All variables in an action de�nition �i�e�	 in its precon�

ditions	 maintenance condition	 expansion	 or e�ects� must be included in the �parameter

or �vars list	 or explicitly introduced with a quanti�er�
�vars is mainly a convenience� Variables appearing here behave as if bound existentially

in preconditions and universally in e�ects	 except that it is an error if more than one instance
satis�es the existential precondition� So	 for example	 in the following de�nition

��action spray�paint

�parameters ��c � color�

�vars ��x � location�

�precondition �at robot �x�

�effect �forall ��y � physob�

�when �at �y �x�

�color �y �c����

if the robot must be in at most one place to avoid an error�
All the variables occurring free in the �effect or �action �eld must be bound in the

�precondition �eld�
The optional argument �only�in�expansions is described in Section ��

� Goal Descriptions

A goal description is used to specify the desired goals in a planning problem and also
the preconditions for an action� Function�free �rst�order predicate logic �including nested
quanti�ers� is allowed�

	GD
 ��� 	atomic formula�term�

	GD
 ��� �and 	GD
��

	GD
 ��� 	literal�term�

	GD
 ����disjunctive�preconditions �or 	GD
��

	GD
 ����disjunctive�preconditions �not 	GD
�

	GD
 ����disjunctive�preconditions �imply 	GD
 	GD
�

	GD
 ����existential�preconditions

�exists �	typed list�variable�
�� 	GD
 �

	GD
 ����universal�preconditions

�forall �	typed list�variable�
�� 	GD
 �

	literal�t�
 ��� 	atomic formula�t�

	literal�t�
 ��� �not 	atomic formula�t�
�

	atomic formula�t�
 ��� �	predicate
 t��

	term
 ��� 	name

�

	term
 ��� 	variable

where	 of course	 an occurrence of a 	predicate
 should agree with its declaration in terms
of number and	 when applicable	 types of arguments�

Hopefully the semantics of these expresssions is obvious�

� E�ects

PDDL allows both conditional and universally quanti�ed e�ects� The description is
straightforward�

	effect
 ��� �and 	effect
��

	effect
 ��� �not 	atomic formula�term�
�

	effect
 ��� 	atomic formula�term�

	effect
 ����conditional�effects �forall �	variable
�� 	effect
�

	effect
 ����conditional�effects �when 	GD
 	effect
�

	effect
 ����fluents�change 	fluent
 	expression
�

We assume that all variables must be bound �either with a quanti�er or in the parameters
section of an action de�nition��

As in strips	 the truth value of predicates are assumed to persist forward in time�
Unlike strips	 PDDL has no delete list � instead of deleting �on a b� one simply asserts
�not �on a b��� If an action
s e�ects does not mention a predicate P then the truth of
that predicate is assumed unchanged by an instance of the action�

The semantics of �when P E� are as follows� If P is true before the action	 then e�ect
E occurs after� P is a secondary precondition ����� The action is feasible even if P is false	
but the e�ect E occurs only if P is true�

Fluents are explained in Section ���

	 Action Expansions

In many classical hierarchical planners �such as Sipe ����	 O�Plan ���	 and UMCP ���� goals
are speci�ed in terms of abstract actions to carry out as well as �or instead of� goals to
achieve� A solution to a planning problems is a sequence of actions that jointly compose all
the abstract actions originally requested� PDDL allows for this style of planning by pro�
viding an �expansion �eld in action de�nitions	 provided the domain declares requirement
�action�expansions� The �eld	 as described above	 is of the form �expansion 	action

spec
	 where 	action spec
 has the following syntax�

	action spec
 ��� 	action�term

	action spec
 ��� �in�context 	action spec

	action�def body
�

	action spec
 ��� �choice 	action spec
��

	action spec
 ��� �forsome �	typed list�variable�
��

	action spec
�

�

	action spec
 ��� �series 	action spec
��

	action spec
 ��� �parallel 	action spec
��

	action spec
 ��� �tag 	action�label term
�

	action spec

	action�label term
��

	action spec
 ����foreach�expansions

�foreach 	typed list�variable�

	GD
 	action spec
�

	action spec
 ����dag�expansions

�constrained �	action spec
��

	action constraint
��

	action constraint
��� �in�context 	action constraint

	action�def body
�

	action constraint
��� �series 	action constraint
��

	action constraint
��� �parallel 	action constraint
��

	action�term
 ��� �	action functor
 	term
��

	action�label term
��� 	action label

� �	 	action label
�

� �
 	action label
�

	action label
 ��� 	name

Extra choices may be added to an action expansion after the action is de�ned	 by the use
of �methods	 as described in Section ��� An action with no expansion is called a primitive

action� or just a primitive� It is always possible to tell by the action de�nition if the action
is primitive� if all its expansions are de�ned via methods	 then the �expansion argument
should be the symbol �methods�

An action may be expanded into a structure of actions	 either a series�parallel combi�
nation	 or	 if the domain declares requirement �dag�expansions an arbitrary partial order
�with steps labeled by tag�� If there is a choice of expansions	 it is indicated using choice�
A forsome behaves like a choice among all its instances�

The only built�in action term is ����	 or no	op�
Anywhere an action is allowed	 the expansion may have an expression of the form

�in�context 	action spec

�precondition P

�maintain M�

This construct is used to declare preconditions and maintenance conditions of actions that
are due purely to their occurring in the context of this expansion� �It should not be used to
repeat the preconditions associated with the de�nition of the action itself�� For example	
to indicate a plan to evacuate an area of friendly forces and then shell it	 one might write

�series �clear �area�

�in�context �shell �area�

�precondition �not �exists ��x � unit�

�and �friendly �x� �in �x �area������

��

As syntactic sugar	 PDDL allows you to write �achieve P� as an abbreviation for
�in�context ���� �precondition P��

The �constrained A C�� syntax allows fairly arbitrary further conditions to be im�
posed on an action spec	 with labels standing in for actions and their endpoints� The labels
are de�ned by the �tag labels action� construct� A label stands for the whole action �oc�
currence� unless it is quali�ed by 	 or
	 in which case it stands for the beginning or end
of the action� Inside C	 �series l� l� ���lk� imposes an additional ordering requirement
on the time points tagged l�� � � � � lk� �in�context �series l� ���lk� 	conditions	� can be
used to impose extra conditions �or announce extra e�ects� of the interval corresponding to
such an additional ordering�

For example	 to expand an action into four subactions �A�	 �B�	 �C�	 and �D�	 such that
�A� precedes �B� and �D�	 and �C� precedes �D�	 with condition �P� maintained from the
end of �A� until the end of �D�	 write

�expansion �constrained ��series �tag A �
 end�a�� �B��

�series �C� �tag �	 beg�d� �D� �
 end�d����

�in�context �series end�a beg�d end�d�

�maintain �P���

As an illustration of all this	 here is a fragment of the University of Maryland Translog
domain ���	 specifying how to unload a �atbed truck�

��action unload

�parameters ��p � package �v � vehicle �l � location�

�expansion

�choice

��� � several choices elided

�forsome ��c � crane�

�in�context

�constrained

�series �tag �pick�up�package�vehicle

�p �c �v �l�

�
 end�n���

�tag �	 beg�n��

�put�down�package�ground

�p �c �l���

�in�context �series end�n� beg�n��

�maintain �and �at�package �p �c�

�at�equipment �c �l����

�precondition �and �flatbed �v�

�empty �c�

�at�package �p �v�

�at�vehicle �v �l�

�at�equipment �c �l������

��

Note that PDDL does not allow you to specify whether it makes sense to insert steps to
achieve an in�context precondition of a choice �as opposed to using it as a ��lter� condition��
That falls into the category of advice	 which is handled in a planner�speci�c way�

The parallel construct imposes no constraints on the execution order of its arguments�
However	 a label associated with a parallel composition is associated with the �rst action of
the composition to begin	 in the case of a �	� label	 or the last action to end	 in the case of
a �
�� E�g�	 to indicate that a condition be true from the end of act� until a set of actions
performed in parallel with act� are �nished	 write

�constrained �tag �parallel �tag �act�� �
 end�act���

�act��

���

�actN��

�
 alldone��

�in�context �series end�act� alldone�

�maintain �condition���

If the domain declares requirement �foreach�expansions	 then an action can have an
expansion of the form �foreach �v� P �v� A�v��	 where v is a set of typed variables	 P �v�
is a precondition	 and A�v� is an action spec� The idea is to expand the action into zero or
more occurrences of A�v�	 one for each instance of P �v� that is true before in the situation
when the expanded action begins execution� �See Appendix A for a precise de�nition of
what it means for an action�spec to be satis�ed by an action sequence��

The syntax of the language permits labels to occur inside choice and foreach action
specs� It is a consequence of the formal semantics of Appendix A that �a� a constraint
mentioning a label inside a choice branch that doesn
t occur doesn
t constrain anything�
�b� a constraint mentioning a reference to a label inside a foreach or forsome from outside
doesn
t constrain anything�

In Section � we mentioned that an action de�nition may contain an argument

�only�in�expansions�

If this is t �default is nil�	 then a planner is not allowed to assume that instances of the
action are feasible if its preconditions are satis�ed� Instead	 it can include an action in
a plan only if it occurs as the expansion of some other action� The intended use of this
notation is to indicate that we do not really know all the preconditions of the action	 just
some standard contexts in which the preconditions are sure to be satis�ed�

See Section �� for a notation that allows cumbersome action expansions to be broken
into more manageable pieces�

 Axioms

Axioms are logical formulas that assert relationships among propositions that hold within
a situation �as opposed to action de�nitions	 which de�ne relationships across successive
situations�� To have axioms	 a domain must declare requirement �domain�axioms�

��

	axiom�def
 ��� ��axiom 	GD
�

�vars �	typed list �variable�
�

�context 	GD

�implies 	literal�term�
�

The �vars �eld behaves like a universal quanti�er� All the variables that occur in the axiom
must be declared here�

For example	 we might de�ne the classical blocks�world predicates above and clear as
follows�

��axiom

�vars ��x �y � physob�

�context �on �x �y�

�implies �above �x �y���

��axiom

�vars ��x �y � physob�

�context �exists ��z � physob�

�and �on �x �z� �above �z �y���

�implies �above �x �y��

��axiom

�vars ��x � physob�

�context �or �� �x Table�

�not �exists ��b � block�

�on �b �x����

�implies �clear �x��

Unless a domain declares requirement �true�negation	 not is treated using the tech�
nique of �negation as failure� ���� That means it makes no sense to conclude a negated
formula� they should occur only as deductive goals	 when �not g� succeeds if and only
if g fails� �If g contains variables	 the results are unde�ned�� Hence axioms are treated
directionally	 always used to conclude the �implies �eld	 and never to conclude a formula
from the �context �eld� �Of course	 whether an axiom is used forward or backward is a
matter of advice	 and PDDL is silent on this issue��

Another important reason for the directionality of axioms is to avoid overly complex in�
teractions with action de�nitions� The rule is that action de�nitions are not allowed to have
e�ects that mention predicates that occur in the �implies �eld of an axiom� The intention
is that action de�nitions mention �primitive� predicates like on	 and that all changes in
truth value of �derived� predicates like above occur through axioms� Without axioms	 the
action de�nitions will have to describe changes in all predicates that might be a�ected by an
action	 which leads to a complex software engineering �or �domain engineering�� problem�

If a domain declares requirement �true�negation �which implies �open�world�	 then
exactly how action de�nitions interact with axioms becomes hard to understand	 and the
management takes no responsibility for the outcome� �For example	 if there is an axiom

��

P �Q � R	 and an action causes �not R� when P and Q are true	 does P become false or
Q �

The domain requirement �subgoal�through�axioms indicates that a goal involving
derived predicates may have to be solved by �nding actions to change truth values of
related primitive predicates� For example	 a goal �above A B� might be achieve by either
achieving �on A B� or achieving �and �an A Z� �above Z B�� for some Z� A domain
that does not declare this requirement may still have axioms	 but they will be used only for
timeless predicates�

Note that a given predicate can be in the �implies �eld of more than one axiom�

�� Safety Constraints

A domain declaring requirement �safety�constraints is allowed to specify safety con	

straints� de�ned as background goals that must be satis�ed throughout the planning pro�
cess� A plan is allowed only if at its end none of these background goals is false� In other
words	 if one of the constraints is violated at some point in the plan	 it must become true
again by the end�

	safety�def
 ��� ��safety 	GD
�

For example	 one could command a softbot �software robot� to avoid deleting �les that
are not backed up on tape with the following constraint�

��safety

�forall ��f�

�or �file �f� �written�to�tape �f����

As everywhere else in PDDL	 free variables are not allowed�
It is important to note that safety constraints do not require an agent to make them

true� rather	 the agent must avoid creating new violations of the constraints� For example	
if a constraint speci�es that all of my �les be read protected	 then the agent would avoid
changing any of my �les to be readable� but if my �plan �le is already readable in the initial
state	 then the agent would not protect that �le�

For details of safety constraints	 please refer to �����
Safety constraints should not be confused with �timeless propositions� �See Section ���

Timeless propositions are always true in all problems in the domain	 and it should be
impossible for any action to change them� Hence no special measures are required to ensure
that they are not violated�

�� Adding Axioms and Action Expansions Modularly

Although PDDL allows a domain to be de�ned as one gigantic define	 it is often more
convenient to break the de�nition into pieces� The following notation allows adding axioms
and action expansions to an existing domain�

��

�define �addendum 	name
�

��domain 	name
�

	extra�def
��

	extra�def
 ��� 	action�def

	extra�def
 ����domain�axioms 	axiom�def

	extra�def
 ����action�expansions 	method�def

	extra�def
 ����safety�constraints 	safety�def

	method�def
 ��� ��method 	action functor

� �name 	name
 �

�parameters � 	typed list �variable�
 �

	action�def body

Please remember that	 as explained in Section �	 in the �strict subset� of PDDL addenda
are not allowed�

Inside a �define �addendum ���� ���� expression	 �actions and �axioms behave as
though they had been included in the original �define �domain ���� ���� expression
for the domain� �method declarations specify further choice points for the expansion of an
already�declared action	 almost as though the given 	action�def body
 included inside a
choice in the original expansion of the action� �It doesn
t work quite that neatly because
the parameters may have new names	 and because an 	action�def body
 is not exactly
what
s expected in a choice��

In a method de�nition	 the 	action�def body
 may not have an �effect �eld or an
�only�in�expansions �eld�

Method names are an aid in describing problem solutions as structures of instantiated
action schemas� Each action has its own space of method names� there is no need to make
them unique over a domain� If an action has a method supplied in its original de�nition	
the name of that method is the same as the name of the action itself�

Example�

�define �addendum carry�methods�

�domain translog

���

��method CARRY�VIA�HUB

�name usual

�parameters ��p � package �tc �tc � tcenter�

�expansion �forsome ��hub � hub�

�in�context �series �carry�direct �p �tc� �hub�

�carry�direct �p �hub �tc���

�precondition �exists ��city� �city� � city

�reg� �reg� � region�

�and �in�city �tc� �city��

�in�city �tc� �city��

�in�region �city� �reg��

�in�region �city� �reg��

�serves �hub �reg��

��

�serves �hub �reg��

�available �hub�����

�precondition �not �hazardous �p���

����

The reason to give addenda names is so the system will know when an addendum is
being rede�ned instead of being added for the �rst time� When a �define �addendum N�

���� expression is evaluated	 all the material previously associated with N is erased before
the de�nitions are added� The name of an addendum is local to its domain	 so di�erent
domains can have addenda with the same name�

�� Expression Evaluation

If a domain declares requirement �expression�evaluation	 then it supports a built�in
predicate �eval E V � that succeeds if the value of expression E is V � E has Lisp�like
syntax for expressions	 which should at least allow functions �	 �	
	 and �� this argument
position is said to be an evaluation context� Evaluation contexts are the only places in
PDDL where functions are allowed	 except for terms denoting actions� E should not
include any variables� if it does	 the goal will fail in an implementation�dependent way�
�Some implementations will distinguish between failure due to E
s value being di�erent
from V and failure due to the inability to generate all instances of E� Cf� equation	
below��

Another evaluation context is the argument to �test E�� Here E is an expression
whose main functor is one of �	
	 		
�	 or 	�� The expression is evaluated	 and the goal
succeeds if it evaluates to T�

The goal �bounded�int I L H� succeeds if I is an integer in the interval �L�H�� L

and H are evaluation contexts�
The goal �equation L R� tries to bind variables so that L and R are equal� Both L

and R are evaluation contexts	 but if there is an unbound variable	 it is bound to whatever
value would make L and R evaluate to the same thing� E�g�	 if �y has been bound to �	
and �x is unbound	 then �equation �� �x �� �� �y ��� will bind �x to �� Don
t expect
an implementation to do anything fancy here� every implementation should at least handle
the case where there is a single occurrence of an unbound variable	 buried at most inside
an expression of the form �� �����

The domain�vars de�ned in �define �domain���� ���� expressions are evaluated in
evaluation contexts� The syntax is

	domain�vars�def
 ��� ��domain�variables

	typed list�domain�var�declaration�

	domain�var�declaration
��� 	name
 � �	name
 	constant
�

E�g��

�define �domain cat�in�the�hat�

��types thing�

��domain�variables �numthings �� � integer�

��

���

��axiom

�vars ��i � integer�

�context �bounded�int �i � numthings�

�implies �thing �i���

A variable like this is scoped over the entire domain	 and is inherited by domains that
extend this one� If the variable is redeclared in an extending theory	 it shadows the original
binding�

If a domain declares requirement �fluents	 then it supports the type �fluent 	type
�	
plus some new predicates� A �uent is a term with time�varying value �i�e�	 a value that can
change as a result of performing an action�� The proposition �current�value F V � is true
in a situation if V is the current value of F in that situation� Further	 if a planner handles
the �fluents requirement	 then there must be a built�in predicate �fluent�eval E V �	
which succeeds if V is the value of E	 using the current value of any �uent that occurs in
E �and otherwise behaving like eval�� Similarly	 there is a predicate fluent�test that
is to test as fluent�eval is to eval� In addition	 there is an e�ect �change F E� that
changes the value of �uent F to E� E is an evaluation context	 and its value is computed
with respect to the situation obtaining before the action �cf� when��

��action pour

�parameters ��source �dest � container�

�vars ��sfl �dfl � �fluent number� �dcap � number�

�precondition �and �contents �source �sfl�

�contents �dest �dfl�

�capacity �dest �dcap�

�fluent�test �	� �� �sfl �dfl� �dcap���

�effect �when �and �contents �source �sfl�

�contents �dest �dfl��

�and �change �sfl ��

�change �dfl �� �dfl �sfl�����

One of the additional built�in functions that comes with requirement �fluents is �sum
v p e�� This is a �uent whose value in a situation is

X

� such that ��p� is true

��e�

v declares all the variables of p that aren
t already bound� e is a �uent�evaluation context�
For example	

�fluent�eval �sum ��p � person �w � number�

�and �aboard �p �elevator�

�weight �p �w��

�w��

succeeds if �w is the total weight of all the people on a �elevator �a variable which must
be bound somewhere else�� Note that the value of this �uent depends on who is on the

��

elevator	 not on what their mass is	 because in this formulation it
s assumed not to change�
If dieting is to be taken into account	 then we would write

�fluent�eval �sum ��p � person �w � �fluent number��

�and �aboard �p �elevator�

�weight �p �w��

�w��

where now �w is a �uent itself�

�� Problems

A problem is what a planner tries to solve� It is de�ned with respect to a domain� A problem
speci�es two things� an initial situation	 and a goal to be achieved� Because many problems
may share an initial situation	 there is a facility for de�ning named initial situations�

	problem
 ��� �define �problem 	name
�

��domain 	name
�

�	require�def
�

�	situation
 �

�	object declaration
 �

�	init
�

	goal
�

�	length�spec
 �

	situation
 ��� ��situation 	initsit name
�

	object declaration
 ��� ��objects 	typed list �name�
�

	init
 ��� ��init 	literal�name�
��

	initsit name
 ��� 	name

	goal
 ��� ��goal 	GD
�

	goal
 ����action�expansions

��expansion 	action spec�action�term�
�

	length�spec
 ��� ��length ���serial 	integer
�� ���parallel 	integer
���

Initial situations are de�ned thus�

	initsit def
 ��� �define �situation 	initsit name
�

��domain 	name
�

� 	object declaration
 �

� 	init
 ��

A problem de�nition must specify either an initial situation by name	 or a list of initially
true literals	 or both� If it speci�es both	 then the literals are treated as e�ects �adds and
deletes� to the named situation� The 	initsit name
 must be a name de�ned either by
a prior situation de�nition or a prior problem de�nition� The �objects �eld	 if present	
describes objects that exist in this problem or initial situation but are not declared in the
�constants �eld of its domain or any superdomain� Objects do not need to be declared if
they occur in the �init list in a way that makes their type unambiguous�

��

All predicates which are not explicitly said to be true in the initial conditions are assumed
by PDDL to be false	 unless the domain declares requirement �open�world�

For example	

�define �situation briefcase�init�

��domain briefcase�world�

��objects P D�

��init �place home� �place office���

�define �problem get�paid�

��domain briefcase�world�

��situation briefcase�init�

��init �at B home� �at P home� �at D home� �in P��

��goal �and �at B office� �at D office� �at P home����

The �goal of a problem de�nition may include a goal description or �if the domain
has declare the requirement �action�expansions� an expansion	 or both� A solution to a
problem is a series of actions such that �a� the action sequence is feasible starting in the
given inital situation situation� �b� the �goal	 if any	 is true in the situation resulting from
executing the action sequence� �c� the �expansion	 if any	 is satis�ed by the series of actions
�in the sense explained in Appendix A��

For instance	 in the transportation domain	 one might have the problem

�define �problem transport�beans�

��domain transport�

��situation standard�network�

��init �beans beans���

�at beans�� chicago��

��expansion �constrained �tag �carry�in�train

beans�� chicago newyork�

�
 end��

�in�context end

�precondition �not �spoiled beans��������

The �requirements �eld of a problem de�nition is for the rare case in which the goal
or initial conditions speci�ed in a problem require some kind of expressiveness that is not
found in the problem
s domain�

The �length �eld of a problem de�nition declares that there is known to be a solution
of a given length� this may be useful to planners that look for solutions by length�

Unlike addendum names �see Section ���	 problem names are global� Exactly how they
are passed to a planner is implementation�dependent�

�� Scope of Names

Here is a table showing the di�erent kinds of names and over what scope they are bound

��

Name type Scope

Reserved word PDDL language
Domain name Global
Type Domain	 inherited
Constant Domain	 inherited
Domain variable Domain	 inherited
Predicate Domain	 inherited
Action functor Domain	 inherited
Addendum Domain	 local
Situation name Domain	 inherited
Problem name Global
Method name Per action functor

Names with scope �domain	 inherited� are visible in a domain and all its descendants�
Names with scope �domain	 local� are visible within a domain but are not visible in descen�
dant domains� Method names are a documentation convenience	 and need have no scope
except that of the functor of which they are methods�

There is limited possibility of overloading names in PDDL� The same name may be
used for a global�scope entity �e�g�	 a problem� and a domain�scope entity �e�g�	 a predicate��
But the same domain�scoped name cannot be used for two di�erent kinds of entity� For
instance	 the same name cannot be used for a type and an action�

The rules for method names are looser	 because they are not true names� The only
restriction is that two distinct methods for the same action may not have the same name�

�� Current Requirement Flags

Here is a table of all requirements in PDDL ���� Some requirements imply others� some
are abbreviations for common sets of requirements� If a domain stipulates no requirements	
it is assumed to declare a requirement for �strips�

��

Requirement Description

�strips Basic STRIPS�style adds and deletes
�typing Allow type names in declarations of variables
�disjunctive�preconditions Allow or in goal descriptions
�equality Support � as built�in predicate
�existential�preconditions Allow exists in goal descriptions
�universal�preconditions Allow forall in goal descriptions
�quantified�preconditions ! �existential�preconditions

" �universal�preconditions

�conditional�effects Allow when in action e�ects
�action�expansions Allow actions to have �expansions

�foreach�expansions Allow actions expansions to use foreach
�implies �action�expansions�

�dag�expansions Allow labeled subactions
�implies �action�expansions�

�domain�axioms Allow domains to have �axioms
�subgoal�through�axioms Given axioms p � q and goal q	 generate subgoal p
�safety�constraints Allow �safety conditions for a domain
�expression�evaluation Support eval predicate in axioms

�implies �domain�axioms�
�fluents Support type �fluent t��

Implies �expression�evaluation
�open�world Don
t make the �closed�world assumption� for all

predicates � i�e�	 if an atomic formula is not
known to be true	 it is not necessarily assumed false

�true�negation Don
t handle not using negation as failure	
but treat it as in �rst�order logic
�implies �open�world�

�adl ! �strips " �typing

" �disjunctive�preconditions

" �equality

" �quantified�preconditions

" �conditional�effects

�ucpop ! �adl " �domain�axioms

" �safety�constraints

�� The Syntax Checker

This section describes how to run the PDDL syntax checker once you have downloaded the
tar distribution �le�

The �le pddl�system contains a Kantrowitz�defsystem de�nition of pddl�syntax�check
and pddl�solution�check	 which are the syntax checker and solution checker	 respectively�
Adjust the directory names in the calls to MK�DEFSYSTEM	 then load in pddl�system	 and do

�MK�COMPILE�SYSTEM �PDDL�SYNTAX�CHECK�

��

If you compile and load a �le full of PDDL de�nitions	 then the domain will be de�ned
as you expect� However	 this works only if the �le contains no syntactic errors� To �nd and
eliminate errors	 use the function

�PDDL�FILE�SYNCHECK 	file
�

This will create a new �le with extension ��chk� which is a pretty�printed version of
the input	 with all syntactic errors �agged thus�

		 error	description� thing

where �thing� is a subexpression and �error�description� says what
s wrong with it�
The idea is that the ��chk� �le plays the role of the ��log� �le in LaTeX� Instead of line

numbers the system just prints the entire input with errors �agged� How well this works
depends partly on the quality of the pretty�printer�

If the global variable STRICT
 is set to T	 the syntax checker will �ag violations of
�strictness� as de�ned in Section ��

The syntax checker does a pretty thorough job	 although there are a few gaps� In order
to check for correct number of arguments to predicates and such	 it
s necessary to store
information about domains as they are checked	 so we have gone all the way	 and written
the syntax checker in such a way that it stores all the information about a domain in
various data structures	 whether the checker itself needs the information or not� Hence a
good way to implement a planner that uses the PDDL notation is to start with the internal
data structures containing the information about a domain	 and add whatever indexes the
planner needs for e#ciency�

To avoid collisions with users
 code	 these data structures are not stored in any place
that is visible by accident �such as symbol property lists�� There is a global hash table
PDDL�SYMBOL�TABLE
 that contains all global bindings� Domains are stored in this ta�
ble	 and then symbols with domain scope are stored in binding tables associated with the
domain�

�� The Solution Checker

The solution checker is another Lisp program� To compile and load it	 follow the instructions
for the syntax checker	 but do �MK�COMPILE�SYSTEM �PDDL�SOLUTION�CHECK� at the end�

A solution to a PDDL problem is a pair of items�

�� A primitive action sequence	 i�e�	 a list of actions that have no expansions�

�� A list of nonprimitive actions	 called expansion hints�

The second component may be absent� The �rst may	 of course	 be empty	 but only if the
problem is trivial�

Suppose problem P has initial situation S	 �goal G	 and �expansion E� A solution
with action sequence A and hints H solves P if and only if all of the following are true�

�� A is feasible starting in situation S	 and in the situation resulting from executing A	
G is true�

��

�� E	 and	 if present	 H are executed by some �not necessarily contiguous� subsequence
of A�

�� Every action in A that is declared �only�in�expansions occurs in one of the subse�
quences instantiating E or H�

To run the solution checker	 �rst load the domain of the problem in �using PDDL�FILE�SYNCHECK�	
then call

�SOLUTION�CHECK A H P�

where A is the action sequence	 H are the hints	 and P is a problem �or problem name�� It
returns T if it can verify the solution	 NIL if it can
t� It may print some helpful messages as
well�

As of Release ���	 the solution checker does not actually check for the presence of action
expansions� So the H argument is ignored�

If the problem de�nition occurs in a �le by itself �p
le�	 and a solution occurs in a �le
by itself �s
le�	 then the procedure

�SOLUTION�FILE�CHECK s
le p
le�

will read the �les	 de�ne the problem	 and run SOLUTION�CHECK on the solution in s
le	
which must be in the form

�step�
step�
���

stepk�

A Formal De�nition of Action Expansions

An anchored action sequence is a sequence hS�� q�� � � � � qki	 where S� is a situation	 q�� � � � � qk
are ground action terms	 and qi�� is feasible in the situation resulting from executing
q�� � � � � qi starting in S�� We call this situation resultdom �S�� hq�� � � � � qii�	 and de�ne it
in the usual way� The subscript dom refers to the domain with respect to which result is
de�ned� In what follows	 we will abbreviate resultdom �S�� hq�� � � � � qii� as Si�

A realization within domain dom of an action spec A in the anchored action sequence
hS�� q�� � � � � qki is a mapping R whose domain is the set of ordered pairs hE� �i	 where E is a
subexpression of A �de�ned by position	 so two di�erent occurrences of the same expression
count as di�erent� or an action tag	 and � is a substitution� and whose range is a set of
unions of closed intervals of the real interval ��� k�� �Not the integer interval��

A realization R of A in hS�� q�� � � � � qki satis
es subexpression E of A with respect to

substitution �	 if and only if one of the following is true�

�� E is an action�label term�

�� E is an occurrence of the term ����	 and there is some i� � � i � k such that
R�E� �� ! �i� i��

��

�� E is a primitive action term other than ����	 and there is some i� � � i � k such that
��E� ! qi	 and R�E� �� ! �i� �� i��

�� E is a nonprimitive action term	 with ��E� variable�free	 and there is an expansion A�

in dom of ��E� �that is	 an �expansion from the �action de�ning E or a �method for
E�	 and a realization R� within dom of ��E� in hS�� q�� � � � � qki	 such that R�E� �� !
R����E�� ���

�� E !�series E� � � � Em�	 and for all i	 � � i � m� �	 R satis�es Ei with respect to
�	 and for all i� j� � � i � j �m	 and for all xi � R�Ei� ��� xj � R�Ej � ��� xi � xj� and
R�E� �� ! 	��i�mR�Ei� ���

�� E !�parallel E� � � � Em�	 and for all � � i� j � m	 R satis�es Ei with respect to
�� and R�E� �� ! 	��i�mR�Ei� ���

�� E !�in�context E� a� � � � al�	 and R satis�es E� with respect to �	 with R�E� �� !
R�E�� �� and	 for each ai�

� If ai ! �precondition C	 then C is true in SL�

� If ai ! �maintain C	 then C is true in Ss for all integer s � �L�H��

where L ! min�R�E�� ��� and H ! max�R�E�� ����

�� E !�choice E� � � � Em�	 and for some i	 � � i � m	 R satis�es Ei with respect to
�	 and R�E� �� ! R�Ei� ���

�� E !�forsome vars E��	 and there is a substitution �� extending � by binding vars	
such that R satis�es E� with respect to ��	 and R�E� �� ! R�E�� �

���

��� E !�foreach vars P E��	 and there is a set X of extensions to � such that for all
�� � X	 ���P � is ground	 such that if �L�H� ! R�E� ��	 then

L ! 	��i�mR�Ei� �
��

and

X ! f�� � �� extends � by binding vars to make ���P � ground and true in SLg

��� E !�tag l� � � � ll E� ll�� � � � lm�	 and R satis�es E� with respect to �	 with R�E� �� !
R�E�� ��	 and for all i� � � i � m	

� If li ! �	 l�	 then R�l� �� ! �L�L��

� If li ! �
 l�	 then R�l� �� ! �H�H��

� Otherwise	 R�l� �� ! �L�H��

where L ! min�R�E�� ��� and H ! max�R�E�� ����

��� E !�constrained E� E� � � � Em�	 and for all i� � � i � m	 R satis�es Ei with
respect to � and R�Ei� ��
 R�E�� ��� and R�E� �� ! R�E�� ���

��

If R�E� �� is not given a value by repeated application of the rules in the list	 then R�E� �� !
��

Finally	 an anchored action sequence satis
es an action spec if the action spec has a
realization into the action sequence that satis�es the entire action spec�

Note that the formal de�nition makes R�E� �� ! � if there is no occurrence of E inside
a foreach or forsome yielding substitution �	 or if no action corresponding to E occurs in
the action sequence� Hence if an action spec has references to tags from contexts that make
no sense	 they will be interpreted as the empty set	 and be ignored if used in constraints�
�Implementators may not want to implement these semantics��

��

References

��� Scott Andrews	 Brian Kettler	 Kutluhan Erol	 and James Hendler� Um Translog� A
Planning Domain for the Development and Benchmarking of Planning Systems� �����

��� A� Barrett	 D� Christianson	 M� Friedman	 K� Golden	 C� Kwok	 J�S� Penberthy	 Y� Sun	
and D� Weld� UCPOP user
s manual	 �version ����� Technical Report ��������d	 Uni�
versity of Washington	 Department of Computer Science and Engineering	 November
����� Available via FTP from pub�ai� at ftp�cs�washington�edu�

��� Jim Blythe	 Oren Etzioni	 Yolanda Gil	 Robert Joseph	 Dan Kahn	 Craig Knoblock	
Steven Minton	 Alicia P$erez	 Scott Reilly	 Manuela Veloso	 and Xuemei Wang� Prodigy
���� The manual and tutorial� Technical Report CMU�CS�������	 Carnegie Mellon
University	 �����

��� K� L� Clark� Negation as failure� In H� Gallaire and J� Minker	 editors	 Logic and Data

Bases	 pages ���%���� Plenum Publishing Corporation	 New York	 NY	 �����

��� K� Currie and A� Tate� O�Plan� the open planning architecture� Arti
cial Intelligence	
��������%��	 November �����

��� K� Erol	 J� Hendler	 and D� Nau� UMCP� A sound and complete procedure for hierar�
chical task�network planning� In Proc� �nd Intl� Conf� on AI Planning Systems	 pages
���%���	 June �����

��� Drew McDermott� Revised Nisp Manual� Technical Report ���	 Yale Computer Science
Department	 �����

��� Drew McDermott� A Heuristic Estimator for Means�ends Analysis in Planning� In
Proc� International Conference on AI Planning Systems �	 pages ���%���	 �����

��� E� Pednault� Synthesizing plans that contain actions with context�dependent e�ects�
Computational Intelligence	 ��������%���	 �����

���� E� Pednault� ADL� Exploring the middle ground between STRIPS and the situation
calculus� In Proc� �st Int� Conf� on Principles of Knowledge Representation and Rea	

soning	 pages ���%���	 �����

���� Dan Weld and Oren Etzioni� The �rst law of robotics �a call to arms�� In Proc� ��th

Nat� Conf� on AI	 pages ����%����	 �����

���� David Wilkins� Practical Planning� Extending the Classical AI Planning Paradigm�
Morgan Kaufmann Publishers	 Inc	 �����

��

